男子被车轮压住,当场没了生命体征,小孩大声哭喊。
这批“高标准二人间”住宿费也是普通四人间的两倍。
声明:本文由入驻搜狐公众平台的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。
原文链接&&&
都说“互联网风口之下,猪都能飞起来”,当互联网东风吹向家电业的时候,应运而生。尤其是近些年来,互联网电视在市场中的表现越来越佳,让不少传统家电企业感受到了竞争的压力。
互联网电视风起云涌 彩企竞相发力领域
据奥维云网(***C)产业链数据显示,月份,传统电视品牌市场份额占75%,同比下滑3.8%,互联网电视品牌份额占16%,同比上升7.9%。从数据中不难看出,互联网品牌开始向挤压传统电视品牌份额的趋势演进。、小米、酷开、、CAN TV、、风行等互联网电视品牌的涌入为整个彩电市场的发展增添了无限活力。
互联网电视以其独特的产品优势已渐成消费者备受青睐的产品内容,而这些功能也体现在多个方面。上网、游戏、网购、社交聊天等特有功能让不少消费者感受到了科技+互联网结合所带来的时代魅力。其中,游戏功能更是让不少家庭感受到其乐融融的和谐氛围,同时也让客厅娱乐产业得到了更为深入的挖掘。
从互联网电视诞生之初,游戏便作为一种重要的电视功能,成为各大互联网电视品牌竞相追逐的领域。根据Newzoo统计,2013年全球实现游戏收入755亿美元,电视游戏实现收入236亿美元,占比31%,位列第一,远超其他种类游戏。此外,专就于中国市场来看,有数据分析机构报告显示,预计2015年中国电视游戏市场规模将达到6.54亿美元(约合人民币40.48元),2019年达到30亿美元。电视游戏市场的潜力巨大,让不少的电视品牌看到了曙光,相继发力抢滩市场份额。
不难看出,电视游戏俨然已成彩电标配,、、等电视厂商相继推出电视游戏或是游戏电视。前些时日,创维联合腾讯所推出的微游戏机通过多设备互联,尤其是与电视机的完美配合,更是将客厅娱乐产业的爆发推上了风口浪尖。
以乐视为代表的互联网电视品牌更是对电视游戏功能心有独钟,从2015年公布的体感游戏生态合伙人计划中可以看出,乐视布局电视游戏市场欲要撬动整个大屏游戏的行业市场。
电视游戏体验度一反常态 鲜有家庭问津?
相对于电视品牌的高涨情绪想比,用户门似乎对电视游戏并没有多大的兴趣。从家庭电视功能反馈情况来看,电视游戏业远没有人们想象的那么热情火爆。可以看到的是,目前市面上的互联网电视基本上都预装了电视游戏功能,如AIWI体感游戏平台、动游游戏平台、ATET游戏平台、小葱游戏平台等。
此外,游戏内容多以益智类、棋牌类、体感类为主。而且不少游戏可免费下载使用,用户使用遥控器、游戏手柄或手机即可操作。看上去一切准备就绪的电视游戏是不是就一定家庭体验度高呢?***是否定的。
前段时间,有业内人士对家庭电视游戏体验做了一项调查,调查结果令人大吃一惊。仅一成网友表示偶尔会通过电视来玩游戏,可见电视游戏功能并没有业内想象的那般令人满意。
或许在互联网电视诞生之初,家庭成员对于互联网电视功能出于好奇多对游戏功能进行体验,然而伴随着家庭对于电视的熟知度逐渐提高,电视游戏功能便日渐搁浅。当然这只是编者个人猜测,时至今日,电视游戏功能仿佛已是江郎才尽,风光不再?
互联网风口之下 电视游戏功能何以备受冷落?
又回到最初的话题当中,“互联网风口之下,猪都能飞起来”。可以看到的是,互联网电视是飞起来了,但电视游戏功能何以备受冷落了呢?或许这得从多方面分析,才能找到***。
电视游戏体验度差
其一,从电视游戏体验度上来看,对于游戏玩家或是普通用户而言,电视游戏的体验效果是非常重要的,尤其是游戏的流畅度更是决定了整个游戏过程中的游戏心情。
“尽管与手机、PC端相比,拥有大屏幕及3D体验等方面优势。但专门为电视设计的游戏少,此外电视游戏兼容性差,感应性也没法和PC相比,经常出现卡顿,很难吸引用户购买并持续使用。”一位业内人士表示。
与PC端和移动端游戏相比,电视游戏既有其优势,也有其不可避免的缺陷。大屏+超清画质构成电视游戏的完美体验效果,然而在日常的生活当中,互联网电视由于技术问题,与电视游戏的兼容性有限,芯片处理能力较弱,卡顿现象不可避免。这样一来,很多用户在体验电视游戏的过程中难免受到影响,长久下来,通过电视玩游戏还不如手机端、PC端玩游戏来的自在,为何大动干戈的“霸占”电视玩游戏呢?
电视游戏设计无亮点
其二,从电视游戏设计上来看,电视游戏毫无创新和亮点也是电视功能受冷落的关键点之一。或许与PC和主机游戏相比,国内的电视游戏产业还存在着很大的提升空间。
互联网电视游戏大多仍是直接将手游原封不动的搬上电视,即使有游戏印有“专属”标签,但细究下来就会发现本质上就是一些休闲小游戏,根本无法与PC端上的“大游戏”相提并论,这无论是对于用户还是游戏玩家而言,都是无关痛痒的功能体验,显得有些鸡肋。
用户习惯尚未实现
其三,从用户习惯上来看,实际上,互联网电视从近些年来才逐步普及到家庭当中,影响人们娱乐生活的。在这这一过程中,很多用户的产品习惯还未实现,多以传统功能电视的使用方式去体验互联网电视,看视频成为了用户使用互联网电视的主流习惯,这样一来对电视游戏产业的发展也有着负面影响。
日前,奥维云网公布了中国OTT系列指数,从硬件、应用、内容三方面对智能电视产业进行解读。其中,智能电视APP应用方面,视频类APP是主流,说明“看”仍是基础需求,其他APP活跃情况欠佳,尤其是游戏类,跃度仅为85,表现欠佳,可见用户习惯尚未形成。
政策下电视盒子受压
广电总局对于互联网的封杀也影响到了电视游戏软件的应用和发展,尤其是对电视盒子的打压,令一些游戏盒子受到冲击。
目前,市面上的电视下载游戏只有一个入口——自带的应用市场。但是出于规避政策风险的考虑,自带应用市场的软件及游戏普遍匮乏,更不要说热门游戏了,但是又没有其他入口可以***游戏软件,智而不能的尴尬境地也让不少电视企业不知如何是好。
用户须为游戏配件买单
可以看到的是,用户作为电视游戏的终极评判者,本就对电视游戏体验感到不为满意,而让用户自费更是有些难度。
据了解,不少如果要玩得专业,还需要有特殊的配件。如体感游戏需要有适配的手机、动感单车等其他辅助配件,而这些配件需要消费者掏腰包,这样一来可能更多的用户将电视游戏放在一边了。
电视游戏市场问题多多 产业如何实现遍地开花?
在面对如此多的产业问题,电视游戏市场将何去何从?电视企业将如何规避问题实现电视游戏产业腾飞呢?
对于电视企业而言,在提升硬件水平的同时,还要注重对游戏质量的把控,与国外知名的游戏公司合作,将画质更高、游戏性更强的大作带到了盒子上或许是一个不错的选择。例如阿里游戏与育碧联手将《刺客信条:海盗》、《波斯王子:影与火》等育碧的招牌游戏引进到了上,用电视盒子玩上高画质游戏大作已不再是梦想。同时,突破技术障碍,加强芯片处理能力,让电视游戏的体验度更为流畅,进而增强用户体验也是电视企业现阶段最应该着手的问题。
此外,搭建良好的软件、硬件、玩家三方的价值链也是电视企业所重点思考的问题,只有实现三方价值链,电视企业才能在电视游戏市场中形成真正的核心竞争力。
从用户的角度来看,用户习惯的改变也不是一时促就的,需要长时期、多方面综合发力才能实现。所以想要用户的目光从电视视频到电视游戏转变,还需要电视游戏厂商自我创新和用户思想观念转变的双效发力。
写在最后:电视游戏作为互联网电视的细分领域,为互联网电视的全面爆发起着非常重要的作用。在面对诸多的市场问题中,无论是彩电企业还是用户,都是电视游戏产业发展的关键操纵者,未来我们且看互联网电视游戏市场是如何突破层层关卡,实现产业腾飞的。
想要下载软件看免费电视直播可以下载个当贝市场
(当贝市场直接下载地址:
专门为智能电视准备的应用商店,比如电视直播类的:影视快搜,电视家2.0,电视猫视频等等。游戏类的刺客信条系列等等大型手柄游戏之类的,都是一键下载,不用U盘,更加方便。
欢迎举报抄袭、转载、暴力***及含有欺诈和虚假信息的不良文章。
请先登录再操作
请先登录再操作
微信扫一扫分享至朋友圈
搜狐公众平台官方账号
生活时尚&搭配博主 /生活时尚自媒体 /时尚类书籍作者
搜狐网教育频道官方账号
全球最大华文占星网站-专业研究星座命理及测算服务机构
ZNDS智能电视网(又名智能电视网),是全国极具影响力的智...
6833文章数
主演:黄晓明/陈乔恩/乔任梁/谢君豪/吕佳容/戚迹
主演:陈晓/陈妍希/张馨予/杨明娜/毛晓彤/孙耀琦
主演:陈键锋/李依晓/张迪/郑亦桐/张明明/何彦霓
主演:尚格·云顿/乔·弗拉尼甘/Bianca Bree
主演:艾斯·库珀/ 查宁·塔图姆/ 乔纳·希尔
baby14岁写真曝光
李冰冰向成龙撒娇争宠
李湘遭闺蜜曝光旧爱
美女模特教老板走秀
曝搬砖男神奇葩择偶观
柳岩被迫成赚钱工具
大屁小P虐心恋
匆匆那年大结局
乔杉遭粉丝骚扰
男闺蜜的尴尬***
******:86-10-
***邮箱:视频游戏为什么对于人工智能的发展如此重要?--百度百家
视频游戏为什么对于人工智能的发展如此重要?
分享到微信朋友圈
拥有好的测试台对人工智能研究来说很关键。游戏就是人工智能的测试台,因为它们为人工智能提供了各种挑战,而且非常吸引人。
对于人类来说,现在最重要的就是发明一个真正的人工智能:一个在绝大多数情况下可以独立思考并采取行动的机器或者软件。一旦这种人工智能出现,它就能帮助我们处理其他形形***的问题。
幸运的是,有数千名研究者在进行人工智能方面的工作。虽然他们中的大多数都在尝试用已知算法解决新问题,但是,有些人正在研究人工智能的首要问题。我兼顾两者。在我看来,解决应用问题刺激了新算法的产生,而且有了新算法,我们就可能解决新问题。为了取得进步,有必要找一些试着用人工智能加以解决的具体问题;如果试着发明人工智能,却没有它适合用来解决的问题,你会感到无从下手。我选择的领域是游戏,而且我也会解释为什么这是最相关的研究领域,如果你认真对待人工智能的话。
但是,首先,让我们承认人工智能近期已然受到广泛的关注了,尤其深度学习这方面的研究遭到热捧,各大主流媒体争相报道,大公司巨额收购相关的初创公司。这几年人工智能也取得了许多令人瞩目的成就:识别场景中的物件、理解演讲内容、名字和人脸的配对、翻译文本。通过一些措施,近期ImageNet比赛的赢家在正确识别图片中的物件方面甚至做的比人更好。有时我会觉得Facebook的算法比我更善于在照片中认出我的好友。
深度神经网络的拿手绝活儿就是所谓的模式识别问题,鲜有例外。基本上就是输入大量数据(一张图片、一首歌、一段文字),输出某些其他(通常小很多)的数据,比如一个名字、分类、另一张图或者其他语言的一段文字。为了学会这一技能,机器需要读取极大量的数据,找到其中模式。易言之,神经网络正在学习大脑感知系统所做的事:视觉、听觉、触觉等等。在较小范围内,他们也能做一部分我们大脑语言中枢的工作。
但是,这并不是智能的全部。人类并不会一天到晚坐在那里看东西。我们会有所作为:决策、执行以解决问题。我们对周边产生影响。(当然,我们有时候会在床上赖一天,但其他的大多数时候,我们总是以某种方式自主活动着的)。智能不断进化,帮助我们在一个充满危险的世界生存下去,而且做到这些需要与周边环境互动,规划行动复杂后果,也要不断适应变化中的环境。模式识别----识别物件或人脸、理解演说等功能----是智能很重要的一部分,但这只是一个不断思忖接下来怎么做的完整体系的一部分。想要研发人工智能,却只专注于模式认知,如同研发汽车却只专注轮胎。
为了建立一个完整的人工智能架构,我们就要建立一个体系,这个体系会涉及某种环境下的对应措施。怎样实现这一点呢?或许最显而易见的方法就是用机器人具身化人工智能(embody AI in robots)。而且实际上,我们也看到了,哪怕是那些最平凡的事情,比如随地形走路、拿起形状奇怪的物品,对机器人来说,都是很难完成的任务。80年代,机器人研究再度大量关注这类「简单」问题,也推动了应用领域的进步,也改善了人们对何为智能的理解。近数十年的机器人进步促使了自驾汽车的产生,这可能会成为人工智能在不久将来将要颠覆的社会领域之一。
如今,机器人的研究接触久了便清楚认识到它的局限。机器人价格昂贵,结构复杂,推进很慢。当我刚开始攻读博士学位时,我的计划是研发一套从错误中自我学习的机器人系统,加速复杂性智能性。但很快发现,为了让我的机器人从他们的经验中自我学习,很多的任务不得不重复上千次,每次又需要好几分钟。这意味着,一项简单的任务就需要花上几天的时间,这还是在机器运行良好、电池散热正常的情况下。如果想要更近一步研发复杂的智能任务,我需要制造一个比以前更复杂的传感器和致动器,这极大增加了系统崩溃的风险。我也需要研发一个复杂的环境从而让复杂技能得以习得。以上种种很快就超出了能力范围。 这大概就是为什么进化机器人还没有能扩展到更复杂智能领域的原因。
我这次太迫不及待了,我渴望看到能从经验中自我学习的智能系统。于是我把主要精力投入到了电脑游戏领域。
游戏和人工智能有很悠久的渊源。早在人工智能被定义成一个专业范畴时,早期的计算机科学家就试图通过游戏编程来测试计算机是否能通过某种形式的「智能」来解决游戏中的问题。阿兰?图灵,计算机科学论证的奠基人,(重新)发明了极值算法并用它来下国际象棋(当时他还是用纸笔演算因为那时候还没有计算机);阿瑟?缪瑟尔(Arthur Samuel )第一个发明了学习机器的形式即现在的强化学习模型,他将这个程序用于跳棋游戏的自我对战。后来,IBM的深蓝计算机靠此战胜了国际象棋的卫冕冠军卡斯帕罗夫。如今,很多研究者力图研发更好的程序进行围棋竞技,但是仍旧没办法超过最好的人类选手。
经典棋盘类游戏,比如象棋,跳棋还有围棋很适合也很容易用来做研究,因为很容易用代码模拟它们,而且模拟速度也相当快----在一台现代电脑上,你可以轻易实现每秒上百万步棋招----对许多人工智能来说,这也是必不可少的。要玩转这类游戏也需要思考,具有「学会仅需一分钟,精通却需一辈子」的特点。情况确实如此,游戏与学习密切相关,而且好的游戏能够不断教会我们游戏技巧。实际上,某种程度上说,玩游戏的乐趣就是在于不断学习它,当再没什么东西可学之时,我们基本上就会对这款游戏失去兴趣。这意味着,一款设计精良的游戏很适合作为人工智能的基准。但是,鉴于如今已经出现(相对简单的)会下棋的计算机程序,比人类还厉害,很明显,玩转这些游戏不需要你真的像人们普遍认为的那样聪明。 当你下棋思考时, 它们锻炼的只是人类思考技巧中非常小的一部分。
但是,我们身边的游戏远远不止这些,尽管祖父年代的人们可能一度这样认为。除了我们熟知的棋牌类,角色扮演类游戏外,还有视频游戏。视频游戏很着广大的粉丝,因为它能充分调动人们的各种感官。就拿超级玛丽来说,这款游戏不仅要求你有敏捷的反应,视觉理解和动作协调性,还需要你对路径的判断力,对于风险奖励的取舍能力,对敌人和角色接下来的预测能力,对在规定时间通关的掌控能力。还有一些游戏要求你对信息的获取能力(比如星际);剧情的理解能力(比如天际);或者长久的规划力(比如文明)。
综上所述,视频游戏可以在计算机中的不同可控环境下运行,而且不少游戏可以在自身的速度上进行加速。开始一款游戏并不复杂也不昂贵,并且在极短的时间内可以运行上千种变化,给学习算法创造了条件。
因此,近期,人工智能研究人员逐渐将视频游戏作为人工智能基准也就不足为奇了。研究人员,比如我自己,已经采用了许多电子游戏作为人工智能基准。我们已经组织过多次竞赛,比赛中,研究人员可以提交他们最棒的游戏人工智能(game-playing AI),通过与其他研究人员最好人工智能竞争,测试自己作品的水平;基于同一款游戏反复竞赛能够让参赛者们精炼自己的研究的进路和方法,以期来年获胜。这些用来测试的游戏有超级玛丽, 星际 (论文), TORCS赛车游戏 &(论文), Ms Pac-Man (论文), 一款街头霸王类的格斗游戏(a generic Street Fighter-style figthing game) (论文), 愤怒的小鸟(论文), Unreal Tournament (论文)和其他等。几乎在所有比赛中,我们都发现每次比赛中,获胜人工智能玩家的表现都有提高。在促进圈内研究方面,这些竞赛也发挥了重要作用,每年发表了许多论文,竞赛软件也被用来作为一些新人工智能方法基准。因此,我们通过游戏竞赛来推进人工智能。
刚才的描述中有个问题,你能指出来吗?
就是那个。游戏特殊性。问题在于,提高人工智能玩家玩某款特定游戏的表现 ,并不必然有助于我们从总体上提升人工智能水平。事实是,在上述绝大多数以游戏为基础的比赛中,我们已经看到,参赛人工智能每次表现都更好了。但是,在绝大多数情况下,表现的提高并不是因为改善了人工智能算法,而是因为针对某些具体问题使用这些算法的方式更加聪明了。有时,这意味着人工智能的角色更加边缘化。比如,在第一年的赛车比赛中,几乎都是采用演化算法训练神经网络,让汽车跑在赛道上的人工智能。后来,大多数最好的参赛者使用了手动的「笨」方法让车跑在赛道上,但是使用了学习算法学习轨道的形状,调整行驶。这是一个解决特殊工程问题的聪明方法,但是,几乎没有一般智能方面的建树。
为了确定这种竞赛是在测试接近人工智能的对象,我们需要重塑问题。为此,定义我们试图测量的对象----一般智能(general intelligence)----是个不错的主意。Shane Legg与Marcus Hutter提出了一个非常有用的关于智能的定义,大致就是一个代理(agent)在所有可能问题上的平均成绩。(在它们的最初方程中,每个对平均成绩有贡献的问题都会依据其简易性而被赋予权重,但是,让我们暂时忽略这一点)。很显然,在所有可能的问题上测试人工智能并不可能,因为问题是无限的。但是,也许我们可以用大量不同的问题来测试人工智能。例如,用大量不同的电子游戏?
想到的第一件事就是利用现有的一堆游戏机游戏,最好是能轻易模拟且能加速到实时速度许多倍的游戏,并搭建一个以此为基准的人工智能。这就是&Arcade Learning Environment (ALE)所做的事情。ALE可以让你在一百多个上世纪七十年代为复古雅达利2600游戏机发布的游戏上测试你的人工智能。人工智能代以像素级别来认识屏幕,必须用操纵杆来回答。ALE被用于大量实验,包括框架的最初研发人员做的实验。也许,最著名的就是谷歌Deep Mind在《Nature》上所发表的一篇论文,介绍了他们如何利用深度学习这样非凡的技能来学习不同游戏(基于深层卷积神经网络的Q型学习)。
ALE是一个很好的人工智能基准,但是,有一个致命的局限性。利用Atari 2600电子游戏的问题在于,游戏数量是有限的,而且研发新游戏是一个麻烦的过程。Atari 2600编程之难,臭名昭著,而且游戏机的硬件局限性也妨碍了可加使用的游戏类别。更重要的是,既有游戏全部都是家喻户晓的,每个人也可以弄得到。这就有可能针对每一个特定游戏来调适你的人工智能。不仅可以针对每个游戏训练你的人工智能(DeepMind取得的成果就是靠每种游戏玩上成千上万次来训练系统),还可以为了在将要训练的游戏上表现更好,调适整个系统。
我们还能做得更好吗?是的,可以。如果我们想要大概了解人工智能可能产生的任何问题,那么,最好的办法就是对闻所未见的问题主动出击,进行测试。也就是说,人工智能设计者在测试之前并不知道哪些问题是之前测试过的。至少,这是我们设计GVGAI(the General Video Game Playing Competition- 通用电玩竞赛)的初衷。
借助GVG,任何人都可以为他们最好的人工智能选手「报名」,在这个特殊的服务器上,人工智能选手可以「玩」十个从未见过的游戏(除了竞赛组织者)。这些游戏的类型是八十年代早期个人电脑或者掌机上见过的类型;有些设计就是基于很多耳熟能详的游戏,比如钻石小子,吃豆人、太空侵略者、推箱子、导弹指令。比赛的获胜者无疑是在这些没有接触过的游戏中表现最好的人工智能「选手」。因此,人工智能设计师没办法针对某个特定游戏调适他们的软件。GVGAI大约有50个游戏可以用来训练你的人工智能,每次迭代都会推出更多游戏。
目前,50个游戏并不是一个大的数目;我们如何获取新的游戏呢?首先,所有游戏必须经过一种被称为「电玩描述语言」的标准进行编程。我们设计出这种简单的语言用来编写游戏,同时满足嵌入性和可读性的条件,类似网页编辑所用的HTML。这种语言的设计主要是为了可以解码经典的掌机游戏;这意味着所有游戏的设计都是基于动作和交互这两个维度。在Wolfenstein3D面世前,这两项是所有电玩设计中最重要的。无论如何,这种语言的简单性方便了新游戏创作,不论是从头开始制作或者是对现存游戏进行变化。(捎带说下,作为此项目的分支,我们正在探索VGDL作为游戏开发的原型工具。)
即使是将编写游戏这件事简单化了,仍然无法解决一个根本问题----还是需要有人进行编写和设计。由于GVG-AI的定位是能够最大可能的满足人工智能测试,我们需要源源不绝的游戏产生出来。因此,我们需要自动生成,需要有软件能够实现:只需点一下,就有新游戏产生,而这些游戏也不能太过简单,要是那种需要人工智能玩家具备一定技巧的好游戏。(副作用是,人类玩家可能也喜欢玩。)
我知道,设计出可以设计新游戏的软件听起来非常困难。然而,我们已经试图攻克该领域多年,我坚信这件事是可行的。Cameron Browne已经成功搭建了一个设计棋盘游戏的生成器,而我们最近的一些工作正致力于自动生成简单的VGDL游戏,尽管距离成功仍需时日。并且,生成游戏的一部分明显可行,比如游戏等级;过去五年,有很多研究专注于进度内容生成----游戏内容的自动生成。研究人员已经证实,诸如演化算法,计划以及回答设定编程之类的方法能够自动创造等级、地图、故事、项目和几何图形状,基本上可以生产游戏的其他任何内容类型。现在,研究的挑战在于泛化这些方法(意味着可以使用在任何游戏上,而不是针对某个特定游戏),让这些方法更具综合性,以便他们能够生成各种游戏元素,包括游戏规则。大多数生成方法包括对正被生成的游戏进行某种形式的模拟,这意味着玩游戏和游戏生产的问题是错综复杂联系在一起的,任何时候都应该一并思考。
一旦用自动游戏生成扩展通用电玩竞赛,我们就有好得多的办法来测试玩游戏的水平。当然,在比赛之外,软件也有用途,提供了一个简单测试玩游戏的人工智能一般智能水平的办法。
到目前为止,我们只谈到如何最好地测试或评估一种计算机程序的一般智能,而不是如何创造一个。嗯,这篇文章的主旨是阐述为何电玩游戏是创造人工智能必不可少的,我相信我已经解释的非常全面了: 作为衡量人工智能水平的一种公平且准确的基准。但出于完整性考虑,我们还是需要考虑创造出此类人工智能最有前途的方法。如上文所述,(深度) 神经网络最近吸引了大量关注是由于其图形识别中获得了惊人高的正确率。我相信,神经网络和类似的图形识别方法在对游戏进行评估和提供改进建议方面可以发挥重要作用。在许多情况下,针对游戏训练神经网络时,演化算法要比梯度方法更合适。
但是,智能并不仅限于模式识别。(同样,行为主义也不能完全解释人类行为:人类并不仅仅是在刺激与反应之间建立起映射,他们也会思考。)智能也必须吸收一些计划行为,在我们做出决定之前,行为的未来影响也会是刺激的一部分。最近,一种叫做Monte Carlo Tree Search的算法,通过对随机行为进行统计,模拟长系列行为后果,这个算法已经在棋盘游戏Go.中创造奇迹。在GVGAI中表现良好。最近在游戏计划任务中展现出巨大潜质的另一个算法家族是&rolling horizon evolution。这里,演化算法不仅被用于长期学习,还被用于短期行动计划。
我认为,通用电子游戏人工智能的下一波发展浪潮会来自神经网络、进化与树搜索的创造性结合。重要之处在于,对各种不同功能来说,模式识别和计划都是必须的。就像研究中经常遇到的情况,我们无法预测研究结果会如何(否则,就算不上研究了),但是,我打赌探索这些方法的各种组合会为研发下一代人工智能算法提供灵感。
现在,你可能会反对说,这是一个非常逼仄的智能和人工智能观。那文本识别,听力理解,讲故事,肢体协调,讽刺和浪漫呢?我们的游戏人工智能可做不到这些,无论它能否玩转世上所有的电脑游戏。对此,我要说:耐心点!所有这些并不需要玩早期电脑游戏,这点没错。但是,当我们掌握了这些游戏并继续玩其他类游戏时,比如角色扮演,冒险游戏,模仿游戏以及社交网络游戏,玩好这些游戏需要掌握很多技巧。当我们掌握的游戏多样性越来越多,玩转游戏所需的认知技能广度也会递增。当然,我们的游戏人工智能必须进步更多才能应对地过来。理解语言,图像,故事,面部表情以及幽默感都是必须的,也不要忘记,与通用视频游戏挑战紧密相随的是来自生产通用视频游戏的挑战,这需要足够的其他类型智能。我确信,视频游戏(一般意义上的)会对所有形式的智能构成挑战,除了那些与身体运动密切相关的游戏,因此,视频游戏(一般意义上)是人工智能最好的测试台。无论采取何种标准,一个能玩几乎所有游戏并能创作各种视频游戏的人工智能就是智能的。
这篇博文开始变得很长----我原来计划的长度只是现在的一部分。但是,要解释的东西也很多。如果你已经读到这里,可能已经忘掉文章最开始的内容了。我来重复一下:
拥有好的测试台对人工智能研究来说很关键。游戏就是人工智能的测试台,因为它们为人工智能提供了各种挑战,和机器人学一样,而且非常吸引人。但是,它们也比较简单,便宜和快速,许多用机器人学无法切实实践的研究也都因此成为可能。这一领域最一开始,棋盘游戏就被用于人工智能研究中了,但是最近十年,越来越多的研究人员已经进入视频游戏领域中,因为游戏提供了更具多样性的相关挑战。(他们也更加有趣)。竞赛在当中扮演了关键角色。但是,为了某个单一游戏,在人工智能上附注太多努力会在总体上限制人工智能的价值。因此,我们创造出通用电玩竞赛( General Video Game Playing Competition ),以及与之相关的软件框架。这意味着,它要成为针对通用智能的最全面的以游戏为基础的基准。通过玩多种人工智能设计者之前没有见过的游戏(而不是仅仅一种)来评估人工智能。通用电子游戏的下一个突破可能就会来自神经网络,演化算法以及Monte Carlo树搜索的组合。与玩这些游戏挑战紧密相连的是生产新游戏和为这些游戏生产新内容的挑战。计划的目的在于让测试人工智能的游戏供给源源不断。尽管玩游戏和生产简单的电脑游戏对大量不同认知能力进行测试---- 比其他任何一种人工智能基准都要更具多样性----但是,我们目前仍没抵达测试所有智能的阶段。不过,考虑到玩转和设计现代视频游戏所需的各种智能,也没理由说我们到不了那里。
如果你想更多了解这些课题,我已经在上述部分对各种博文,文章以及书籍做了链接。我目前在做的大多数研究(以及我们在纽约大学游戏创新实验室做的),是以某种方式与我在此处描绘的整体计划联系在一起的。最近,我将过去几年研究回顾做了一个集合,并与自己最近研究做了链接。更多的文章可以在我的网页找到。认识到这一工作中的大部分内容都具有双重目的---- &促进人工智能发展和让游戏更有趣---- 很重要。我们正在研发的许多技术或多或少关注的是改善游戏。针对特定游戏提升人工智能这方面,仍有重要工作要做,这一点也很重要。在最近的另一篇博文中,我试着想象,如果我们已经拥有真实人工智能,视频游戏会是什么样子?我最近写了一篇论文试着勾勒出游戏当中整个人工智能领域的轮廓,但是,内容很长和很复杂,我建议你先阅读博文,再去阅读文章。你也可以精读 &Computational Intelligence and Games&和Artificial Intelligence and Interactive Digital Entertainment conference series的会议记录。
最后,注意这一点很重要:这一路线的研究还有很大的空间,你们可以参与进来,因为还有很多很多的开放研究问题。如果你尚未从事这方面的研究,我认为你应该开始了。它让人激动,因为它就是未来。你还等什么呢?
机器之心,最专业的前沿科技媒体和产业服务平台,每日提供优质产业资讯与深度思考,欢迎关注微信公众号「机器之心」(almosthuman2014),或登录机器之心网站查看更多精彩内容。
阅读:5364
分享到微信朋友圈
在手机阅读、分享本文
还可以输入250个字
推荐文章RECOMMEND
阅读:3260
阅读:11万
热门文章HOT NEWS
苹果公司今天正式发布了新iPhone 7和iPhone 7 P...
八卦掌门人
杨君君杂潭
百度新闻客户端
百度新闻客户端
百度新闻客户端
扫描二维码下载
订阅 "百家" 频道
观看更多百家精彩新闻