谁知道大话三藏宝阁,二坐灵符详细属性?

在平面直角坐标系中,点A坐标为(1,1),过点A作AB⊥x轴,垂足为点B,△AOB绕点O逆时针方向旋转90°,得到△MON(如图所示),若二次函数的图象经过点A、M、O三点.
(1)求这个二次函数的解析式;
(2)如果把这个二次函数图象向右平移2个单位,得到新的二次函数图象与y轴的交点为C,求tan∠ACO的值;
(3)在(2)的条件下,设新的二次函数图象的对称轴与x轴的交点为D,点E在这条对称轴上,如果△BCO与以点B、D、E所组成的三角形相似(相似比不为1),求点E的坐标.
(1)本题需先得出M点的坐标,再设出二次函数的解析式为y=ax2+bx+c,把A、M、O三点代入即可求出解析式.
(2)本题先得出图象向右平移2个单位的解析式,从而得出与y轴的交点坐标,再连接AN,即可求出tan∠ACO的值.
(3)本题需先分根据(2)的解析式得出对称轴为直线x=2,得出D点的坐标,再设出点E的坐标,这时再分两种情况进行讨论,当点E在x轴的上方时,得出$\frac{BD}{DE}=\frac{OC}{BO}$,即可求出点E的坐标,当点E在x轴的下方时,同理可得出点E的坐标.
(1)由旋转可知:点M的坐标为(-1,1),
设所求二次函数的解析式为y=ax2+bx+c
∵二次函数的图象经过点A、M、O三点,点A坐标为(1,1),
∴$\left\{\begin{array}{l}1=a-b+c\\ 1=a+b+c\\ 0=c.\end{array}\right.$
∴$\left\{\begin{array}{l}a=1\\ b=0\\ c=0.\end{array}\right.$
∴这个二次函数的解析式为y=x2.
(2)将这个二次函数图象向右平移2个单位,
得到新的二次函数的解析式为y=(x-2)2.
∴二次函数y=(x-2)2的图象与y轴的交点为C为(0,4),
由旋转可知:点N的坐标为(0,1),连接AN.
在Rt△ANC中,AN=1,CN=3,
∴$tan∠ACO=\frac{AN}{CN}=\frac{1}{3}$.
(3)由(2)得:新的二次函数y=(x-2)2图象的对称轴为直线x=2.
根据题意:得点D的坐标为(2,0),
可设点E坐标为(2,x),∠BOC=∠BDE=90°.
如果△BCO与以点B、D、E所组成的三角形相似:
①当点E在x轴的上方时,
如果$\frac{BD}{DE}=\frac{BO}{OC}$,又BD=BO=1,容易知道△BCO与△BDE全等(舍去),
如果$\frac{BD}{DE}=\frac{OC}{BO}$,又BD=1,BO=1,OC=4,DE=x,
∴$\frac{1}{x}=\frac{4}{1}$,
∴$x=\frac{1}{4}$.
所以点E的坐标为(2,$\frac{1}{4}$).
②当点E在x轴的下方时,
同理:可得到E的坐标为(2,-$\frac{1}{4}$).
所以:当△BCO与以点B、D、E所组成的三角形相似(相似比不为1)时,
点E的坐标为(2,$\frac{1}{4}$)或(2,-$\frac{1}{4}$).二维坐标运算符重载_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
二维坐标运算符重载
上传于||文档简介
&&C​+​+​的​运​算​符​重​载​示​例
阅读已结束,如果下载本文需要使用5下载券
想免费下载本文?
定制HR最喜欢的简历
你可能喜欢2. 编一个模拟计算器进行简单算术运算的程序(c=a运算符b),只做加、减、乘、除四种运算.(用switch结构提示:1.算术运算需要2个操作数(int型变量),并且要保存结果的话,还需要一个浮点型量.故共需3个变量.2.运算符可以用char型来保存.
#include&stdio.h&int&main(){&&&&int&a,c;&&&&char&b;&&&&float&&&&&scanf(&%d&%c&%d&,&a,&b,&c);&&&&&&&&//输入需要分开,如:1&+&2&&&&switch(b)&&&&{&&&&&&&&case&'+':&&&&&&&&&&&&result=a+c;&&&&&&&&&&&&&&&&&&&&case&'-':&&&&&&&&&&&&result=a-c;&&&&&&&&&&&&&&&&&&&&case&'*':&&&&&&&&&&&&result=a*c;&&&&&&&&&&&&&&&&&&&&case&'/':&&&&&&&&&&&&if(&c&==&0&)&&&&&&&&//除数不能为0&&&&&&&&&&&&&&&&{&&&&&&&&&&&&&&&&&&&&printf(&c&is&error&);&&&&&&&&&&&&&&&&&&&&return&1;&&&&&&&&&&&&&&&&&}&&&&&&&&&&&&result=a/(float)c;&&&&&&&&&&&&&&&&&&&&default:&&&&&&&&&&&&printf(&b&is&error!&);&&&&&&&&&&&&return&1;&&&&}&&&&printf(&%f&,result);&&&&return&0;}
为您推荐:
其他类似问题
扫描下载二维码

参考资料

 

随机推荐