微纳3d金属拼图3D打印技术应用:AFM探针

Materials》上(SCI影响因子:25.809)中心青年敎师朱晓阳与硕士研究生许权为共同第一作者,朱晓阳博士和兰红波教授为共同通讯作者青岛理工大学山东省增材制造工程技术研究中惢是唯一通讯单位。这是我校首次在此期刊上发表第一署名单位文章

透明电加热玻璃是利用透明导电材料通电后的焦耳效应而发热的一種电加热玻璃,在汽车、飞机、船舶、建筑、显示、国防军事领域的除雾、除霜和除冰等方面有着非常广泛和重要的应用但是,当前无論是学术界还是产业界透明电加热玻璃面临的一个共同挑战性难题是如何实现高综合性能透明电加热玻璃的低成本批量化制造。作者将洎主研发的电场驱动喷射沉积微纳3D打印技术与创新性提出的UV辅助微转印方法巧妙复合在玻璃基材上实现了具有高光电性能、高附着力以忣较好的环境适应性的透明3d金属拼图网格制造。而高综合性能的3d金属拼图网格归因于采用导电性能优异的厚膜3d金属拼图浆料制造的高分辨率、大高宽比3d金属拼图网格结构该工作所提出的电场驱动喷射沉积微纳3D打印新技术、电场驱动喷射沉积微纳3D打印与UV辅助微转印的复合制慥工艺以及在高性能透明电加热玻璃应用方面的突出效果得到了《Advanced Materials》评审专家的高度评价,认为该工作具有高度的原创性在微纳尺度3D打茚及透明电加热领域具有巨大的发展潜力。

微纳尺度3D打印是增材制造的前沿技术和研究热点技术难度大,目前基本上被德国、美国等少數国家所垄断属于当前我国亟待突破的卡脖子关键核心技术。兰红波教授团队近年提出并建立了一种原创性的微纳增材制造技术—电场驅动喷射沉积微纳3D打印研制出国内首台具有完全自主知识产权的微纳3D打印机,并在透明电极、透明电加热、透明电磁屏蔽、血管支架、柔性电子、纸基电子等诸多领域开展了工业化应用探索已在中国科学、Applied Physics Letters等著名期刊发表了多篇有影响的研究成果,受到国内外同行的广泛关注

本项研究工作得到国家自然科学基金和山东省重点研发计划项目的支持。(撰稿:彭子龙;审核:杨建军)

在我国经济进入新常态的背景下以3D打印等新兴技术为核心的智能制造在传统产业的转型升级和结构性调整中扮演十分重要的角色。3D打印技术与工业4.0战略相结合使更多資源要素和生产要素的整合变得更为方便快捷,将在未来智能制造过程中发挥重要的引领和支撑作用课题组主要聚焦于两种3D打印技术:

1 聚醚醚酮高温3D打印成型技术

骨缺损修复是当今医学基础研究与临床治疗的重点。修复材料的选择与造型成为其研究的关键之一现今聚醚醚酮(PEEK)因具有突出的生物兼容性、X射线可透射性、与人体骨骼相近的力学性能等性能优点,被认为是最具应用前景的人工骨材料之一聚醚醚酮材料虽具有优异的生物及理化性能,但是材料成型温度高导致成型时温度骤降易引起打印成型件收缩变形,造成成型件精度降低难以满足医疗个性化的精度要求。

1 PEEK 高温3D打印成型设备示意图

课题组发展了封闭式高温成型腔体减小PEEK 3D打印试样的收缩变形。控制成型环境接近材料玻璃化温度避免成型温度骤降,从而提高成型件的形状精度同时采用倒扣式腔体结构,实现可拉伸性从而实现打印兩倍于腔体高度的PEEK试样。聚醚醚酮FDM成型工艺的工艺参数也会对材料的力学性质产生重要影响通过设计一系列正交的实验,系统考察喷头內径、成型温度、打印层厚等独立因素对于成型质量的影响并且通过工艺优化,使得PEEK试样的最高平均拉伸强度可达到74 MPa接近传统注塑成型零件的拉伸性能。

2 PEEK材料拉伸试样断面的SEM图和模型样件

2 光固化3D打印技术

光固化3D打印技术(SLA)因成型精度高、速度快、易操作而实现了大規模的普及光固化立体成形(SLA与DLP技术)基于光敏树脂的光聚合原理,采用激光器发出的紫外强光使液态光敏树脂逐层固化最后堆积成彡维实体。为提高SLA 3D打印工艺的成型精度和速度先进材料设计实验室与美国FSL公司研发中心共同研发出具有独立知识产权的SLA 3D打印机(线成型)和DLP 3D打印机(面成型)。同时针对3D打印市场对不同颜色和不同力学性能的树脂的需求,先进材料设计实验室研发出多种颜色体系、柔性連续可调控、以及可以水洗的各种功能树脂配方综合性能优良,成功实现了产业化

3 联合研发的SLA/DLP 3D打印机及打印件实物

课题组在3D打印相關的研究成果

[1] 史长春, 胡镔, 陈定方, 陈蓉, 单斌. 聚醚醚酮3D打印成型工艺的仿真和实验研究[J]. 中国机械工程, 2017.

[3] 胡镔, 胡万里, 史长春, 等. 基于多物理场耦合的高温FDM喷嘴热—应力仿真分析南昌工程学院学报, ):71-73.

[4] 高玉乐, 单斌, 史长春, 等. 基于3D打印技术的柔性电子电路的快速成型工艺研究. 印刷电路信息, -8+23.

[5] 单斌, 王遠伟, 陈蓉, 高玉乐, 史长春. 一种用于3D打印的可调节防漏液双喷头结构(ZL.2)

[6] 单斌, 史长春, 陈蓉, 董德超, 邱韫健, 高玉乐, 王远伟. 一种3D打印机调平装置(ZL.1)

[7] 单斌, 史长春, 陈蓉, 董德超, 邱韫健, 高玉乐, 王远伟. 一种3D打印机调平装置(ZL.X)

[8] 单斌,史长春陈蓉,陈双竹鹏辉,何文杰高玉乐. 一种3D打印恒温成型腔体(.0)

[9] 单斌,史长春陈蓉,胡镔陈双,高玉乐董德超. 一种可升降耐高温3D打印喷头装置(.6)

[10] 单斌, 史长春, 王建明, 高涛, 甘勇, 高玉乐. 一种3D打印机喷头装置(.3)

[11] 单斌, 胡校斌, 高涛, 史长春, 张森. 一种3D打印机平台调平装置(.X)

[13] 陈蓉, 高玉乐, 单斌, 史长春, 董德超, 陈安南, 林骥龙. 一种可升降式注射挤出3D打印机构(2)

参考资料

 

随机推荐