对方微信没有个人相册6个人 3个人上前打我,我护头蹲下其余3人合力将我打倒在地后,我

对方10多个人打我把我按在地上打,然后他们跑了,我报警后派出所鉴定_百度知道&请从A、B和C三小题中选定两小题作答,如都作答则按A、B两题评分.
A.(选修模块3-3)(12分)
(1)(4分)下列说法中正确的是
A.一定温度下饱和汽的压强随体积的增大而减小
B.人对空气干爽与潮湿的感受主要取决于空气的相对湿度
C.产生毛细现象时,液体在毛细管中一定上升
D.能量耗散虽然不会使能的总量减少,却会导致能量品质的降低
(2)(4分)下列说法中,正确的是
A.晶体具有确定的熔点&&&&&&&&&
B.多晶体具有各向异性
C.晶体和非晶体之间不能相互转化
D.碳原子按照不同规则排列,可以成为石墨,也可以成为金刚石
(3)(4分)如图所示,用活塞封闭一定质量理想气体的导热气缸放在水平桌面上,气缸正上方有一个沙漏正在漏沙,导致活塞缓慢下降.若大气压和外界温度恒定,随着沙子不断漏下,缸内气体的压强逐渐&&&&
(选填“增大”或“减小”),气体&&&&& (选填“吸收”或“放出”)热量.
B.(选修模块3—4)(12分)
(1)(4分)下列说法中正确的是
A.光的偏振现象说明光是一种纵波
B.相对论认为时间和空间与物质的运动状态有关
C.用激光读取光盘上记录的信息是利用激光平行度好的特点
D.当观察者向静止的声源运动时,接收到的声音频率小于声源发出的频率
(2)(4分)如图所示,Sl、S2是两个水波波源,某时刻它们形成的波峰和波谷分别用图中实线和虚线表示.下列说法中正确的是
A.两列波的波长一定不同&&&&&&&&
B.两列波的频率可能相同
C.两列波叠加不能产生干涉现象&& D.B点的振动始终是加强的
(3)( 4分)如图所示,OO'为等腰棱镜ABC的对称轴.两束频率不同的单色光a、b关于OO'对称,垂直AB面射向棱镜,经棱镜折射后射出并相交于P点.则此棱镜对光线a的折射率&&&&& (选填“大于”、“等于”或“小于”)对光线b的折射率;这两束光从同一介质射向真空时,光束以发生全反射时的临界角&& &&&(选填“大于”、“等于”或“小于”)光束b发生全反射时的临界角.
C.(选修模块3—5)(12分)
(1)(4分)下列关于近代物理知识说法中正确的是
A.光电效应显示了光的粒子性
B.玻尔理论可以解释所有原子的光谱现象
C.康普顿效应进一步证实了光的波动特性
D.为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的
(2)(4分)在天然放射现象中,释放出的三种射线a、b、c在磁场中运动轨迹如图所示,其中&&&&
是β射线, &&&&穿透能力最强.(选填“a”、“b”或“c”)[来源:]
(3)(4分)利用水平放置的气垫导轨做《探究碰撞中的不变量》的实验,如图所示,图中A、B装置叫&&&&&&&&&&&
,其作用是&&&&&&&&&&&
.若测得滑块甲的质量为0.6kg,滑块乙的质量为0.4kg,两滑块作用前甲的速度大小为0.8m/s,乙的速度大小为0.5m/s,迎面相碰后甲乙粘在一起以0.28m/s的速度沿甲原来的方向前进.则两滑块相互作用过程中不变的量是&&&&& ,大小为&&&&&&&& .
第Ⅰ卷(选择题 共31分)
一、单项选择题.本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意.
1. 关于科学家和他们的贡献,下列说法中正确的是[来源:Www..com]
A.安培首先发现了电流的磁效应
B.伽利略认为自由落体运动是速度随位移均匀变化的运动
C.牛顿发现了万有引力定律,并计算出太阳与地球间引力的大小
D.法拉第提出了电场的观点,说明处于电场中电荷所受到的力是电场给予的
2.如图为一种主动式光控报警器原理图,图中R1和R2为光敏电阻,R3和R4为定值电阻.当射向光敏电阻R1和R2的任何一束光线被遮挡时,都会引起警铃发声,则图中虚线框内的电路是
A.与门&&&& &&&&&&&&&&&& B.或门 &&&&&&&&&&&&& C.或非门&& &&&&&&&&&&&&& &D.与非门
3.如图所示的交流电路中,理想变压器原线圈输入电压为U1,输入功率为P1,输出功率为P2,各交流电表均为理想电表.当滑动变阻器R的滑动头向下移动时
A.灯L变亮&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& B.各个电表读数均变大
C.因为U1不变,所以P1不变& &&&&&&&&&&&&&&&&&&&&&&&&&&& D.P1变大,且始终有P1= P2
4.竖直平面内光滑圆轨道外侧,一小球以某一水平速度v0从A点出发沿圆轨道运动,至B点时脱离轨道,最终落在水平面上的C点,不计空气阻力.下列说法中不正确的是
A.在B点时,小球对圆轨道的压力为零
B.B到C过程,小球做匀变速运动
C.在A点时,小球对圆轨道压力大于其重力
D.A到B过程,小球水平方向的加速度先增加后减小
5.如图所示,水平面上放置质量为M的三角形斜劈,斜劈顶端***光滑的定滑轮,细绳跨过定滑轮分别连接质量为m1和m2的物块.m1在斜面上运动,三角形斜劈保持静止状态.下列说法中正确的是
A.若m2向下运动,则斜劈受到水平面向左摩擦力
B.若m1沿斜面向下加速运动,则斜劈受到水平面向右的摩擦力
C.若m1沿斜面向下运动,则斜劈受到水平面的支持力大于(m1+ m2+M)g
D.若m2向上运动,则轻绳的拉力一定大于m2g
二、多项选择题.本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分.
6.木星是太阳系中最大的行星,它有众多卫星.观察测出:木星绕太阳作圆周运动的半径为r1、 周期为T1;木星的某一卫星绕木星作圆周运动的半径为r2、 周期为T2.已知万有引力常量为G,则根据题中给定条件
A.能求出木星的质量
B.能求出木星与卫星间的万有引力
C.能求出太阳与木星间的万有引力
D.可以断定
7.如图所示,xOy坐标平面在竖直面内,x轴沿水平方向,y轴正方向竖直向上,在图示空间内有垂直于xOy平面的水平匀强磁场.一带电小球从O点由静止释放,运动轨迹如图中曲线.关于带电小球的运动,下列说法中正确的是
A.OAB轨迹为半圆
B.小球运动至最低点A时速度最大,且沿水平方向
C.小球在整个运动过程中机械能守恒
D.小球在A点时受到的洛伦兹力与重力大小相等
8.如图所示,质量为M、长为L的木板置于光滑的水平面上,一质量为m的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为f,用水平的恒定拉力F作用于滑块.当滑块运动到木板右端时,木板在地面上移动的距离为s,滑块速度为v1,木板速度为v2,下列结论中正确的是
A.上述过程中,F做功大小为            
B.其他条件不变的情况下,F越大,滑块到达右端所用时间越长
C.其他条件不变的情况下,M越大,s越小
D.其他条件不变的情况下,f越大,滑块与木板间产生的热量越多
9.如图所示,两个固定的相同细环相距一定的距离,同轴放置,O1、O2分别为两环的圆心,两环分别带有均匀分布的等量异种电荷.一带正电的粒子从很远处沿轴线飞来并穿过两环.则在带电粒子运动过程中
A.在O1点粒子加速度方向向左
B.从O1到O2过程粒子电势能一直增加
C.轴线上O1点右侧存在一点,粒子在该点动能最小
D.轴线上O1点右侧、O2点左侧都存在场强为零的点,它们关于O1、O2连线中点对称
第Ⅱ卷(非选择题 共89分)
三、简答题:本题分必做题(第lO、11题)和选做题(第12题)两部分,共计42分.请将解答填写在答题卡相应的位置.
10.测定木块与长木板之间的动摩擦因数时,采用如图所示的装置,图中长木板水平固定.
(1)实验过程中,电火花计时器应接在& ▲& (选填“直流”或“交流”)电源上.调整定滑轮高度,使& ▲& .
(2)已知重力加速度为g,测得木块的质量为M,砝码盘和砝码的总质量为m,木块的加速度为a,则木块与长木板间动摩擦因数μ=& ▲& .
(3)如图为木块在水平木板上带动纸带运动打出的一条纸带的一部分,0、1、2、3、4、5、6为计数点,相邻两计数点间还有4个打点未画出.从纸带上测出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.则木块加速度大小a=& ▲& m/s2(保留两位有效数字).
11.为了测量某电池的电动势 E(约为3V)和内阻 r,可供选择的器材如下:
A.电流表G1(2mA& 100Ω)&&&& &&&&&&& B.电流表G2(1mA& 内阻未知)
C.电阻箱R1(0~999.9Ω)&&&&&&& &&&&&&&&&&&&& D.电阻箱R2(0~9999Ω)
E.滑动变阻器R3(0~10Ω& 1A)&& &&&&& F.滑动变阻器R4(0~1000Ω& 10mA)
G.定值电阻R0(800Ω& 0.1A)&&&&&&& &&&&&& H.待测电池
I.导线、电键若干
(1)采用如图甲所示的电路,测定电流表G2的内阻,得到电流表G1的示数I1、电流表G2的示数I2如下表所示:
根据测量数据,请在图乙坐标中描点作出I1—I2图线.由图得到电流表G2的内阻等于
& ▲& Ω.
(2)在现有器材的条件下,测量该电池电动势和内阻,采用如图丙所示的电路,图中滑动变阻器①应该选用给定的器材中& ▲& ,电阻箱②选& ▲& (均填写器材代号).
(3)根据图丙所示电路,请在丁图中用笔画线代替导线,完成实物电路的连接.
12.选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)
A.(选修模块3-3)(12分)
(1)下列说法中正确的是& ▲&
A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力
B.扩散运动就是布朗运动
C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体
D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述
(2)将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是& ▲& m(保留一位有效数字).
(3)如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g.
①求活塞停在B点时缸内封闭气体的压强;
②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).
B.(选修模块3-4)(12分)
(1)下列说法中正确的是& ▲&
A.照相机、摄影机镜头表面涂有增透膜,利用了光的干涉原理
B.光照射遮挡物形成的影轮廓模糊,是光的衍射现象
C.太阳光是偏振光
D.为了有效地发射电磁波,应该采用长波发射
(2)甲、乙两人站在地面上时身高都是L0, 甲、乙分别乘坐速度为0.6c和0.8c(c为光速)的飞船同向运动,如图所示.此时乙观察到甲的身高L& ▲& L0;若甲向乙挥手,动作时间为t0,乙观察到甲动作时间为t1,则t1& ▲& t0(均选填“&”、“ =” 或“&”).
(3)x=0的质点在t=0时刻开始振动,产生的波沿x轴正方向传播,t1=0.14s时刻波的图象如图所示,质点A刚好开始振动.
①求波在介质中的传播速度;
②求x=4m的质点在0.14s内运动的路程.
&& C.(选修模块3-5)(12分)
(1)下列说法中正确的是& ▲&
A.康普顿效应进一步证实了光的波动特性
B.为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的
C.经典物理学不能解释原子的稳定性和原子光谱的分立特征
D.天然放射性元素衰变的快慢与化学、物理状态有关
(2)是不稳定的,能自发的发生衰变.
①完成衰变反应方程& &&▲& .
②衰变为,经过& ▲& 次α衰变,& ▲& 次β衰变.
(3)1919年,卢瑟福用α粒子轰击氮核发现质子.科学研究表明其核反应过程是:α粒子轰击静止的氮核后形成了不稳定的复核,复核发生衰变放出质子,变成氧核.设α粒子质量为m1,初速度为v0,氮核质量为m2,质子质量为m0, 氧核的质量为m3,不考虑相对论效应.
①α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为多大?
②求此过程中释放的核能.
四、计算题:本题共3小题,共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后***的不能得分,有数值计算的题,***中必须明确写出数值和单位.
13.如图所示,一质量为m的氢气球用细绳拴在地面上,地面上空风速水平且恒为v0,球静止时绳与水平方向夹角为α.某时刻绳突然断裂,氢气球飞走.已知氢气球在空气中运动时所受到的阻力f正比于其相对空气的速度v,可以表示为f=kv(k为已知的常数).则
(1)氢气球受到的浮力为多大?
(2)绳断裂瞬间,氢气球加速度为多大?
(3)一段时间后氢气球在空中做匀速直线运动,其水平方向上的速度与风速v0相等,求此时气球速度大小(设空气密度不发生变化,重力加速度为g).
14.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区.
(1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时ab两点间的电势差;
(2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率;
(3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间T,cd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t.
15.如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心O到MN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e.
(1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大?
(2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).
(3)在(2)的情况下,求金属圆筒的发热功率.
第一部分 &力&物体的平衡第一讲 力的处理一、矢量的运算1、加法表达:&+&&=&&。名词:为“和矢量”。法则:平行四边形法则。如图1所示。和矢量大小:c =&&,其中α为和的夹角。和矢量方向:在、之间,和夹角β= arcsin2、减法表达:&=&-&。名词:为“被减数矢量”,为“减数矢量”,为“差矢量”。法则:三角形法则。如图2所示。将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。差矢量大小:a =&&,其中θ为和的夹角。差矢量的方向可以用正弦定理求得。一条直线上的矢量运算是平行四边形和三角形法则的特例。例题:已知质点做匀速率圆周运动,半径为R&,周期为T&,求它在T内和在T内的平均加速度大小。解说:如图3所示,A到B点对应T的过程,A到C点对应T的过程。这三点的速度矢量分别设为、和。根据加速度的定义&=&得:=&,=&由于有两处涉及矢量减法,设两个差矢量&=&-&,=&-&,根据三角形法则,它们在图3中的大小、方向已绘出(的“三角形”已被拉伸成一条直线)。本题只关心各矢量的大小,显然:&=&&=&&=&&,且:&=&=&&,&= 2=&所以:=&&=&&=&&,=&&=&&=&&。(学生活动)观察与思考:这两个加速度是否相等,匀速率圆周运动是不是匀变速运动?答:否;不是。3、乘法矢量的乘法有两种:叉乘和点乘,和代数的乘法有着质的不同。⑴ 叉乘表达:×&=&名词:称“矢量的叉积”,它是一个新的矢量。叉积的大小:c = absinα,其中α为和的夹角。意义:的大小对应由和作成的平行四边形的面积。叉积的方向:垂直和确定的平面,并由右手螺旋定则确定方向,如图4所示。显然,×≠×,但有:×=&-×⑵ 点乘表达:·&= c名词:c称“矢量的点积”,它不再是一个矢量,而是一个标量。点积的大小:c = abcosα,其中α为和的夹角。二、共点力的合成1、平行四边形法则与矢量表达式2、一般平行四边形的合力与分力的求法余弦定理(或分割成RtΔ)解合力的大小正弦定理解方向三、力的***1、按效果***2、按需要——正交***第二讲 物体的平衡一、共点力平衡1、特征:质心无加速度。2、条件:Σ&= 0 ,或&&= 0 ,&= 0例题:如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。解说:直接用三力共点的知识解题,几何关系比较简单。***:距棒的左端L/4处。(学生活动)思考:放在斜面上的均质长方体,按实际情况分析受力,斜面的支持力会通过长方体的重心吗?解:将各处的支持力归纳成一个N ,则长方体受三个力(G 、f 、N)必共点,由此推知,N不可能通过长方体的重心。正确受力情形如图6所示(通常的受力图是将受力物体看成一个点,这时,N就过重心了)。答:不会。二、转动平衡1、特征:物体无转动加速度。2、条件:Σ= 0 ,或ΣM+&=ΣM-&如果物体静止,肯定会同时满足两种平衡,因此用两种思路均可解题。3、非共点力的合成大小和方向:遵从一条直线矢量合成法则。作用点:先假定一个等效作用点,然后让所有的平行力对这个作用点的和力矩为零。第三讲 习题课1、如图7所示,在固定的、倾角为α斜面上,有一块可以转动的夹板(β不定),夹板和斜面夹着一个质量为m的光滑均质球体,试求:β取何值时,夹板对球的弹力最小。解说:法一,平行四边形动态处理。对球体进行受力分析,然后对平行四边形中的矢量G和N1进行平移,使它们构成一个三角形,如图8的左图和中图所示。由于G的大小和方向均不变,而N1的方向不可变,当β增大导致N2的方向改变时,N2的变化和N1的方向变化如图8的右图所示。显然,随着β增大,N1单调减小,而N2的大小先减小后增大,当N2垂直N1时,N2取极小值,且N2min&= Gsinα。法二,函数法。看图8的中间图,对这个三角形用正弦定理,有:&=&&,即:N2&=&&,β在0到180°之间取值,N2的极值讨论是很容易的。***:当β= 90°时,甲板的弹力最小。2、把一个重为G的物体用一个水平推力F压在竖直的足够高的墙壁上,F随时间t的变化规律如图9所示,则在t = 0开始物体所受的摩擦力f的变化图线是图10中的哪一个?解说:静力学旨在解决静态问题和准静态过程的问题,但本题是一个例外。物体在竖直方向的运动先加速后减速,平衡方程不再适用。如何避开牛顿第二定律,是本题授课时的难点。静力学的知识,本题在于区分两种摩擦的不同判据。水平方向合力为零,得:支持力N持续增大。物体在运动时,滑动摩擦力f = μN ,必持续增大。但物体在静止后静摩擦力f′≡ G ,与N没有关系。对运动过程加以分析,物体必有加速和减速两个过程。据物理常识,加速时,f < G ,而在减速时f > G 。***:B 。3、如图11所示,一个重量为G的小球套在竖直放置的、半径为R的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L(L<2R),一端固定在大圆环的顶点A ,另一端与小球相连。环静止平衡时位于大环上的B点。试求弹簧与竖直方向的夹角θ。解说:平行四边形的三个矢量总是可以平移到一个三角形中去讨论,解三角形的典型思路有三种:①分割成直角三角形(或本来就是直角三角形);②利用正、余弦定理;③利用力学矢量三角形和某空间位置三角形相似。本题旨在贯彻第三种思路。分析小球受力→矢量平移,如图12所示,其中F表示弹簧弹力,N表示大环的支持力。(学生活动)思考:支持力N可不可以沿图12中的反方向?(正交***看水平方向平衡——不可以。)容易判断,图中的灰色矢量三角形和空间位置三角形ΔAOB是相似的,所以:& & & & & & & & & & & & & & & & & &⑴由胡克定律:F = k(- R) & & & & & & & &⑵几何关系:= 2Rcosθ & & & & & & & & & & ⑶解以上三式即可。***:arccos&。(学生活动)思考:若将弹簧换成劲度系数k′较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?答:变小;不变。(学生活动)反馈练习:光滑半球固定在水平面上,球心O的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图13所示的A位置开始缓慢拉至B位置。试判断:在此过程中,绳子的拉力T和球面支持力N怎样变化?解:和上题完全相同。答:T变小,N不变。4、如图14所示,一个半径为R的非均质圆球,其重心不在球心O点,先将它置于水平地面上,平衡时球面上的A点和地面接触;再将它置于倾角为30°的粗糙斜面上,平衡时球面上的B点与斜面接触,已知A到B的圆心角也为30°。试求球体的重心C到球心O的距离。解说:练习三力共点的应用。根据在平面上的平衡,可知重心C在OA连线上。根据在斜面上的平衡,支持力、重力和静摩擦力共点,可以画出重心的具体位置。几何计算比较简单。***:R 。(学生活动)反馈练习:静摩擦足够,将长为a 、厚为b的砖块码在倾角为θ的斜面上,最多能码多少块?解:三力共点知识应用。答:&。4、两根等长的细线,一端拴在同一悬点O上,另一端各系一个小球,两球的质量分别为m1和m2&,已知两球间存在大小相等、方向相反的斥力而使两线张开一定角度,分别为45和30°,如图15所示。则m1&: m2??为多少?解说:本题考查正弦定理、或力矩平衡解静力学问题。对两球进行受力分析,并进行矢量平移,如图16所示。首先注意,图16中的灰色三角形是等腰三角形,两底角相等,设为α。而且,两球相互作用的斥力方向相反,大小相等,可用同一字母表示,设为F 。对左边的矢量三角形用正弦定理,有:&=&& & & & &①同理,对右边的矢量三角形,有:&=&& & & & & & & & & & & & & & & &②解①②两式即可。***:1 :&。(学生活动)思考:解本题是否还有其它的方法?答:有——将模型看成用轻杆连成的两小球,而将O点看成转轴,两球的重力对O的力矩必然是平衡的。这种方法更直接、简便。应用:若原题中绳长不等,而是l1&:l2&= 3 :2 ,其它条件不变,m1与m2的比值又将是多少?解:此时用共点力平衡更加复杂(多一个正弦定理方程),而用力矩平衡则几乎和“思考”完全相同。答:2 :3&。5、如图17所示,一个半径为R的均质金属球上固定着一根长为L的轻质细杆,细杆的左端用铰链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的水平面。由于金属球和木板之间有摩擦(已知摩擦因素为μ),所以要将木板从球下面向右抽出时,至少需要大小为F的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力?解说:这是一个典型的力矩平衡的例题。以球和杆为对象,研究其对转轴O的转动平衡,设木板拉出时给球体的摩擦力为f&,支持力为N&,重力为G&,力矩平衡方程为:f R + N(R + L)= G(R + L)& & & & & &①球和板已相对滑动,故:f = μN & & & &②解①②可得:f =&再看木板的平衡,F = f 。同理,木板插进去时,球体和木板之间的摩擦f′=&&= F′。***:&。第四讲 摩擦角及其它一、摩擦角1、全反力:接触面给物体的摩擦力与支持力的合力称全反力,一般用R表示,亦称接触反力。2、摩擦角:全反力与支持力的最大夹角称摩擦角,一般用φm表示。此时,要么物体已经滑动,必有:φm&= arctgμ(μ为动摩擦因素),称动摩擦力角;要么物体达到最大运动趋势,必有:φms&= arctgμs(μs为静摩擦因素),称静摩擦角。通常处理为φm&=&φms&。3、引入全反力和摩擦角的意义:使分析处理物体受力时更方便、更简捷。二、隔离法与整体法1、隔离法:当物体对象有两个或两个以上时,有必要各个击破,逐个讲每个个体隔离开来分析处理,称隔离法。在处理各隔离方程之间的联系时,应注意相互作用力的大小和方向关系。2、整体法:当各个体均处于平衡状态时,我们可以不顾个体的差异而讲多个对象看成一个整体进行分析处理,称整体法。应用整体法时应注意“系统”、“内力”和“外力”的涵义。三、应用1、物体放在水平面上,用与水平方向成30°的力拉物体时,物体匀速前进。若此力大小不变,改为沿水平方向拉物体,物体仍能匀速前进,求物体与水平面之间的动摩擦因素μ。解说:这是一个能显示摩擦角解题优越性的题目。可以通过不同解法的比较让学生留下深刻印象。法一,正交***。(学生分析受力→列方程→得结果。)法二,用摩擦角解题。引进全反力R&,对物体两个平衡状态进行受力分析,再进行矢量平移,得到图18中的左图和中间图(注意:重力G是不变的,而全反力R的方向不变、F的大小不变),φm指摩擦角。再将两图重叠成图18的右图。由于灰色的三角形是一个顶角为30°的等腰三角形,其顶角的角平分线必垂直底边……故有:φm&= 15°。最后,μ= tgφm&。***:0.268 。(学生活动)思考:如果F的大小是可以选择的,那么能维持物体匀速前进的最小F值是多少?解:见图18,右图中虚线的长度即Fmin&,所以,Fmin&= Gsinφm&。答:Gsin15°(其中G为物体的重量)。2、如图19所示,质量m = 5kg的物体置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物体,使物体能够沿斜面向上匀速运动,而斜面体始终静止。已知斜面的质量M = 10kg ,倾角为30°,重力加速度g = 10m/s2&,求地面对斜面体的摩擦力大小。解说:本题旨在显示整体法的解题的优越性。法一,隔离法。简要介绍……法二,整体法。注意,滑块和斜面随有相对运动,但从平衡的角度看,它们是完全等价的,可以看成一个整体。做整体的受力分析时,内力不加考虑。受力分析比较简单,列水平方向平衡方程很容易解地面摩擦力。***:26.0N 。(学生活动)地面给斜面体的支持力是多少?解:略。答:135N 。应用:如图20所示,一上表面粗糙的斜面体上放在光滑的水平地面上,斜面的倾角为θ。另一质量为m的滑块恰好能沿斜面匀速下滑。若用一推力F作用在滑块上,使之能沿斜面匀速上滑,且要求斜面体静止不动,就必须施加一个大小为P = 4mgsinθcosθ的水平推力作用于斜面体。使满足题意的这个F的大小和方向。解说:这是一道难度较大的静力学题,可以动用一切可能的工具解题。法一:隔离法。由第一个物理情景易得,斜面于滑块的摩擦因素μ= tgθ对第二个物理情景,分别隔离滑块和斜面体分析受力,并将F沿斜面、垂直斜面***成Fx和Fy&,滑块与斜面之间的两对相互作用力只用两个字母表示(N表示正压力和弹力,f表示摩擦力),如图21所示。对滑块,我们可以考查沿斜面方向和垂直斜面方向的平衡——Fx&= f + mgsinθFy&+ mgcosθ= N且 f = μN = Ntgθ综合以上三式得到:Fx&= Fytgθ+ 2mgsinθ & & & & & & & ①对斜面体,只看水平方向平衡就行了——P = fcosθ+ Nsinθ即:4mgsinθcosθ=μNcosθ+ Nsinθ代入μ值,化简得:Fy&= mgcosθ & & &②②代入①可得:Fx&= 3mgsinθ最后由F =解F的大小,由tgα=&解F的方向(设α为F和斜面的夹角)。***:大小为F = mg,方向和斜面夹角α= arctg()指向斜面内部。法二:引入摩擦角和整体法观念。仍然沿用“法一”中关于F的方向设置(见图21中的α角)。先看整体的水平方向平衡,有:Fcos(θ- α) = P & & & & & & & & & & & & & & & & & ⑴再隔离滑块,分析受力时引进全反力R和摩擦角φ,由于简化后只有三个力(R、mg和F),可以将矢量平移后构成一个三角形,如图22所示。在图22右边的矢量三角形中,有:&=&=&& &&&⑵注意:φ= arctgμ=&arctg(tgθ) = θ & & & & & & & & & & & & & & & & & & & & & & &⑶解⑴⑵⑶式可得F和α的值。
第九部分 稳恒电流第一讲 基本知识介绍第八部分《稳恒电流》包括两大块:一是“恒定电流”,二是“物质的导电性”。前者是对于电路的外部计算,后者则是深入微观空间,去解释电流的成因和比较不同种类的物质导电的情形有什么区别。应该说,第一块的知识和高考考纲对应得比较好,深化的部分是对复杂电路的计算(引入了一些新的处理手段)。第二块虽是全新的内容,但近几年的考试已经很少涉及,以至于很多奥赛培训资料都把它删掉了。鉴于在奥赛考纲中这部分内容还保留着,我们还是想粗略地介绍一下。一、欧姆定律1、电阻定律a、电阻定律&R =&ρb、金属的电阻率&ρ&=&ρ0(1 +&αt)2、欧姆定律a、外电路欧姆定律&U = IR&,顺着电流方向电势降落b、含源电路欧姆定律在如图8-1所示的含源电路中,从A点到B点,遵照原则:①遇电阻,顺电流方向电势降落(逆电流方向电势升高)②遇电源,正极到负极电势降落,负极到正极电势升高(与电流方向无关),可以得到以下关系UA&? IR ?&ε&? Ir = UB&这就是含源电路欧姆定律。c、闭合电路欧姆定律在图8-1中,若将A、B两点短接,则电流方向只可能向左,含源电路欧姆定律成为UA&+ IR ?&ε&+ Ir = UB&= UA即&ε&= IR + Ir&,或&I =&这就是闭合电路欧姆定律。值得注意的的是:①对于复杂电路,“干路电流I”不能做绝对的理解(任何要考察的一条路均可视为干路);②电源的概念也是相对的,它可以是多个电源的串、并联,也可以是电源和电阻组成的系统;③外电阻R可以是多个电阻的串、并联或混联,但不能包含电源。二、复杂电路的计算1、戴维南定理:一个由独立源、线性电阻、线性受控源组成的二端网络,可以用一个电压源和电阻串联的二端网络来等效。(事实上,也可等效为“电流源和电阻并联的的二端网络”——这就成了诺顿定理。)应用方法:其等效电路的电压源的电动势等于网络的开路电压,其串联电阻等于从端钮看进去该网络中所有独立源为零值时的等效电阻。2、基尔霍夫(克希科夫)定律a、基尔霍夫第一定律:在任一时刻流入电路中某一分节点的电流强度的总和,等于从该点流出的电流强度的总和。例如,在图8-2中,针对节点P&,有I2&+ I3&= I1&基尔霍夫第一定律也被称为“节点电流定律”,它是电荷受恒定律在电路中的具体体现。对于基尔霍夫第一定律的理解,近来已经拓展为:流入电路中某一“包容块”的电流强度的总和,等于从该“包容块”流出的电流强度的总和。b、基尔霍夫第二定律:在电路中任取一闭合回路,并规定正的绕行方向,其中电动势的代数和,等于各部分电阻(在交流电路中为阻抗)与电流强度乘积的代数和。例如,在图8-2中,针对闭合回路①&,有ε3&?&ε2&= I3&( r3&+ R2&+ r2&) ? I2R2&基尔霍夫第二定律事实上是含源部分电路欧姆定律的变体(☆同学们可以列方程 UP&= … = UP得到和上面完全相同的式子)。3、Y?Δ变换在难以看清串、并联关系的电路中,进行“Y型?Δ型”的相互转换常常是必要的。在图8-3所示的电路中☆同学们可以证明Δ→ Y的结论…Rc&=&Rb&=&Ra&=&Y→Δ的变换稍稍复杂一些,但我们仍然可以得到R1&=&R2&=&R3&=&三、电功和电功率1、电源使其他形式的能量转变为电能的装置。如发电机、电池等。发电机是将机械能转变为电能;干电池、蓄电池是将化学能转变为电能;光电池是将光能转变为电能;原子电池是将原子核放射能转变为电能;在电子设备中,有时也把变换电能形式的装置,如整流器等,作为电源看待。电源电动势定义为电源的开路电压,内阻则定义为没有电动势时电路通过电源所遇到的电阻。据此不难推出相同电源串联、并联,甚至不同电源串联、并联的时的电动势和内阻的值。例如,电动势、内阻分别为ε1&、r1和ε2&、r2的电源并联,构成的新电源的电动势ε和内阻r分别为(☆师生共同推导…)ε&=&r =&2、电功、电功率电流通过电路时,电场力对电荷作的功叫做电功W。单位时间内电场力所作的功叫做电功率P&。计算时,只有W = UIt和P = UI是完全没有条件的,对于不含源的纯电阻,电功和焦耳热重合,电功率则和热功率重合,有W = I2Rt =&t和P = I2R =&。对非纯电阻电路,电功和电热的关系依据能量守恒定律求解。&四、物质的导电性在不同的物质中,电荷定向移动形成电流的规律并不是完全相同的。1、金属中的电流即通常所谓的不含源纯电阻中的电流,规律遵从“外电路欧姆定律”。2、液体导电能够导电的液体叫电解液(不包括液态金属)。电解液中离解出的正负离子导电是液体导电的特点(如:硫酸铜分子在通常情况下是电中性的,但它在溶液里受水分子的作用就会离解成铜离子Cu2+和硫酸根离子S,它们在电场力的作用下定向移动形成电流)。在电解液中加电场时,在两个电极上(或电极旁)同时产生化学反应的过程叫作“电解”。电解的结果是在两个极板上(或电极旁)生成新的物质。液体导电遵从法拉第电解定律——法拉第电解第一定律:电解时在电极上析出或溶解的物质的质量和电流强度、跟通电时间成正比。表达式:m = kIt&=&KQ&(式中Q为析出质量为m的物质所需要的电量;K为电化当量,电化当量的数值随着被析出的物质种类而不同,某种物质的电化当量在数值上等于通过1C电量时析出的该种物质的质量,其单位为kg/C。)法拉第电解第二定律:物质的电化当量K和它的化学当量成正比。某种物质的化学当量是该物质的摩尔质量M(克原子量)和它的化合价n的比值,即&K =&&,而F为法拉第常数,对任何物质都相同,F = 9.65×104C/mol&。将两个定律联立可得:m =&Q&。3、气体导电气体导电是很不容易的,它的前提是气体中必须出现可以定向移动的离子或电子。按照“载流子”出现方式的不同,可以把气体放电分为两大类——a、被激放电在地面放射性元素的辐照以及紫外线和宇宙射线等的作用下,会有少量气体分子或原子被电离,或在有些灯管内,通电的灯丝也会发射电子,这些“载流子”均会在电场力作用下产生定向移动形成电流。这种情况下的电流一般比较微弱,且遵从欧姆定律。典型的被激放电情形有b、自激放电但是,当电场足够强,电子动能足够大,它们和中性气体相碰撞时,可以使中性分子电离,即所谓碰撞电离。同时,在正离子向阴极运动时,由于以很大的速度撞到阴极上,还可能从阴极表面上打出电子来,这种现象称为二次电子发射。碰撞电离和二次电子发射使气体中在很短的时间内出现了大量的电子和正离子,电流亦迅速增大。这种现象被称为自激放电。自激放电不遵从欧姆定律。常见的自激放电有四大类:辉光放电、弧光放电、火花放电、电晕放电。4、超导现象据金属电阻率和温度的关系,电阻率会随着温度的降低和降低。当电阻率降为零时,称为超导现象。电阻率为零时对应的温度称为临界温度。超导现象首先是荷兰物理学家昂尼斯发现的。超导的应用前景是显而易见且相当广阔的。但由于一般金属的临界温度一般都非常低,故产业化的价值不大,为了解决这个矛盾,科学家们致力于寻找或合成临界温度比较切合实际的材料就成了当今前沿科技的一个热门领域。当前人们的研究主要是集中在合成材料方面,临界温度已经超过100K,当然,这个温度距产业化的期望值还很远。5、半导体半导体的电阻率界于导体和绝缘体之间,且ρ
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对***更方便,扫描上方二维码立刻***!

参考资料

 

随机推荐