求一个安卓游戏名字,一个巫师能发出能量黑洞,可以通过一个黑洞从另一个黑洞里面是另一个宇宙

科学与环境
人类可逃出黑洞超强吸引力 进入另外一个宇宙 揭秘黑洞里面是什么?
&【人类可逃出黑洞 进入另外一个宇宙】黑洞,听过的人很多,了解的人很少,众所周知,引力场强大是黑洞最重要的特质,一旦遇上黑洞,任何物质和辐射都无法逃逸,就连传播速度最快的光(电磁波)也逃不出来。不过著名物理学家史蒂芬
霍金在瑞典首都斯德哥尔摩发布有关黑洞的新理论&&信息可以通过黑洞放出的辐射粒子进行逃逸,甚至人类也能逃脱。
相关阅读:您当前的位置:&>&&>&&>&
黑洞、婴儿宇宙及其他 电子书下载
书籍作者:
上传格式:.rar
书籍大小:82 KB
更新时间: 00:00:00
所属分类:人文社科
书籍状态:
使用环境:[!--softfj--]
数据一览:总点击()
手机下载:
内容简介:
《黑洞、婴儿宇宙及其他 》txt下载& && && &我出生于日,这一天刚好是伽利略的三百年忌日。我估计大约有二十万个婴儿在同日诞生。我不知道他们中是否有人在长大后对天文学感兴趣。虽然我的父母当时住在伦敦,但我却是在牛津出生的。这是由于第二次世界大战之时德国承诺不轰炸牛津和剑桥,所以当时牛津是个安全的出生地。英国亦以不轰炸海德堡和哥廷根作为回报。可惜的是,英德两国这类文明的协议却不能惠及更多的城市。& &   “1”作者注:这篇和下一篇文章是基于1987年9月在苏黎士对国际运动神经细胞病学学会的发言,并和1991年8月写的材料相合并。  我父亲是约克郡人。他的祖父,也就是我的曾祖父曾是一个富裕的农民。他曾买下太多的农场,并在本世纪初农业大萧条时宣告破产。这次破产使我祖父母一蹶不振,但是他们仍然节衣缩食送我父亲念了牛津的医学院。之后,我父亲从事热带病研究。1937年他去了东非。第二次世界大战爆发时,他正在东非,他横贯非洲大陆才得以搭船回到英国。回到英国后,尽管他知道他在医学界作研究更有价值,他仍然自愿入伍了。  我母亲生于苏格兰的格拉斯哥,是一位家庭医生的七个孩子中的老二。在我母亲十二岁那年,他们举家迁往南方的德汶。像我父亲的家一样,她的家也从未大富大贵过。尽管如此,他们还是设法送她念了牛津大学。牛津毕业后,我母亲从小过各种各样的职业,其中包括她挺讨厌的查税员工作。后来她辞去了这个工作做了秘书。也就是这个工作使我父母得以在第二次世界大战初期相识。  我们家住在伦敦以北的海格特。我的妹妹玛丽比我晚出生十八个月。后来大人告诉我说,当时我不欢迎她的来临。由于我们之间年龄相差太少,所以我们在整个童年期间关系都有一点紧张。然而,在我们成年之后,由于各奔前程,相互之间的不愉快就化为乌有。她成了一名医生,这很讨我父亲欢心。我的更小的妹妹菲利珀出生时,我已快满五周岁,并且知道发生了什么事情。我还能记得,我盼望她的到来,这样我们三个人好在一道作游戏。她是一名非常深沉颖悟的小孩。我总是尊重她的判断和意见。我的弟弟爱德华来得很晚,那时我已十四岁了,所以他几乎根本没有进入过我的童年。他和其他三个小孩非常不同,成为完全非学术性和非知识型的了。这对我们也许是件好事。他是名相当淘气的孩子,但是你不能不喜欢他。  我最早的记忆是站在海格特的拜伦宫的托儿所里嚎啕大哭。我周围的小孩都在玩似乎非常美妙的玩具。我想参加进去,但是我才两岁半,这是第一回我被放到不认识的人群当中去。我是父母的第一个小孩,我父母遵循育婴手册的说法,小孩在两岁时必须开始社交。所以我想我的反应一定使他们十分惊讶。度过这么糟糕的上午后,他们即把我带走,一年半之内再也没有把我送回到拜伦宫。  那正是世界大战结束不久,海格特是许多科学家和学术界人士的住处。他们如果在其他国家就会被称作知识分子,但是英国从未承认有过任何知识分子。所有这些人都把孩子送到拜伦宫学校,这是一所当时非常先进的学校。我记得自己曾向父母亲报怨过,说他们没有教我任何东西。他们不相信当时接受的填鸭式教学法,你必须在不知不觉之中学会阅读。最终我是学会了阅读,那是直到八岁的相当晚的年龄。我的妹妹菲利珀是用更方便的方法被教会阅读的,四岁时就会阅读了。那时候,她一定比我能干。  我们住在一幢又高又窄的维多利亚式的房子里。这是我父母亲在战时以非常廉价买下的,那时所有人都认为伦敦会被炸平。事实上,一枚V-2火箭在离开我们几幢房子处着地。当时我和母亲以及妹妹都不在,而我的父亲在房子里。幸运的是,他没有受伤,房子也未受重创。有好几年的时间路上一直遗留有一个大弹坑,我经常和我的朋友霍佛在里面玩,他家和我隔三个门。霍佛无异为我揭开了一个新天地,因为他的父母不是知识分子,不像我所认识的其他小孩父母那样。他上公立学校,而不是拜伦宫,他通晓足球和拳击,这些都是我父母坚决禁止的。  另一个最早的回忆是得到玩具火车。战时不制造玩具,至少不对国内市场。但是,我对模型火车极其着迷。我父亲为我做了一列木头火车,这并不使我满足,因为我要一列会开动的。所以我父亲搞到一列二手货的带发条的火车,焊好后给我作为圣诞礼物,那时我快满三岁了。那火车不能很好行驶。战事刚结束我父亲就去了美国,在乘“玛丽皇后”的归途中,他为我母亲买了一些尼龙,当时在英国得不到尼龙。他给我妹妹玛丽买回一个玩具娃娃,这个玩具娃娃一躺下就把眼睛闭上。他为我买了一列美国火车,还带有排障器和8字型的轨道。我尚能记得自己在打开盒子时的激动之情。  发条火车似乎是尽善尽美了,但是我真正想要的是电动火车。我经常花好几个钟头观看海格特附近的模型铁路俱乐部展览。电动火车是我梦寐以求的东西。最后,当我父母亲都不在的时候,我把存在邮局银行的非常有限的钱全部取出,这是大家在特殊场合譬如讲我受洗礼时给我的。我用这些钱买了一列电动火车,但使人非常沮丧的是,它运行得不怎么好。今天我们知道了顾客的权益。我应该把它送回,要求商店或者厂家换一列。但是在那个时候,人们以为买东西便是一种特权,如果商品有毛病的话,就只能怪你运气欠佳。这样我花钱买了电动马达,它却从未正常工作过。  后来,我在十几岁时制作了模型飞机和轮船。我的手工从来就不灵巧,这是和我的学友约翰·马克连纳汉合作的。他比我能干得多;而且他父亲在家里有一个车间。我的目标总是建造我能控制的可以开动的模型。我不在乎其外观如何。我想正是同样的冲动驱使我和另外一位学友罗杰·费尼霍弗去发明一系列非常复杂的游戏。有一种制作游戏,还包括制造不同颜色零件的工厂,运载产品的公路铁路以及股票市场。有一种战争游戏是在有四千个方格的纸板上玩的。甚至还有一种封建游戏,每一个参与者都是一个带有家谱的皇朝。我想这些游戏以及火车、轮船和飞机都来自于探究事物并且进而进行控制的要求。从我开始攻读博士之后,这种渴求在宇宙论研究中才得到满足。  1950年我父亲工作的地点从海格特附近的汉姆斯达德迁到伦敦北界的碾坊山新建的国立药物研究所。看来迁到伦敦郊区再通勤到城里比从海格特向外面通勤更方便些。我父母亲因此在教堂城圣阿尔班斯购买了一幢房子,大约在碾坊山以北十英里以及伦敦以北二十英里的地方;这是一幢颇为典雅颇具特色的巨大的维多利亚时代的房子。我父母买房子时手头并不富裕,所以在我们迁进去之前要做许多修缮。此后我的父亲正如同他的约克郡老乡一样,再也不愿花钱作任何修缮。他自己尽量地维护并油漆房子,但是房子太大而且他又不擅长此道。然而,房子建得很稳固,所以能经受得了多年失修。1985年我父亲病得很重时(他死于1986年),我父母亲把它卖掉了。我最近还看到它。似乎从那时以后就没有整修过,但是看起来却没有什么改变。  这幢房子是为带仆人的家庭设计的。宇宙的其他地方对于地球上发生的任何事物根本不在乎。绕着太阳公转的行星的运动似乎最终会变成混沌,尽管其时间尺度很长。这表明随着时间流逝,任何预言的误差将越来越大。在一段时间之后,就不可能预言运动的细节。我们能相当地肯定,地球在相当长的时间内不会和金星相撞。但是我们不能肯定,在轨道上的微小扰动会不会积累起来,引起在十几亿年后发生这种碰撞。太阳和其他恒星绕着银河系的运动,以及银河系统着其局部星系团的运动也是混沌的。我们观测到,其他星系正离开我们运动而去,而且它们离开我们越远,就离开得越快。这意味着我们周围的宇宙正在膨胀:不同星系间的距离随时间而增加。  我们观察到的从外空间来的微波辐射背景给出这种膨胀是平滑而非混沌的证据。你只要把你的电视调到一个空的频道就能实际观测到这个辐射。你在屏幕上看到的斑点的小部分是由太阳系外的微波引起的。这就是从微波炉得到的同类的辐射,但是要更微弱得多。它只能把食物加热到绝对温度的2.7度,所以不能用来温热你的外卖皮萨。人们认为这种辐射是热的早期宇宙的残余。但是它最使人印象深刻的是,从任何方向来的辐射量几乎完全相同。宇宙背景探索者卫星已经非常精确地测量了这种辐射。从这些观测绘出的天空图可以显示辐射的不同温度。在不同方向上这些温度不同,但是差别非常微小,只有十万分之一。因为宇宙不是完全光滑的,存在诸如恒星、星系和星系团的局部无规性,所以从不同方向来的微波必须有些不同。但是,要和我们观测到的局部无规性相协调,微波背景的变化不可能再小了。微波背景在所有方向上能够相等到1& & 0分之99999.上古时代,人们以为地球是宇宙的中心。在任何方向上背景都一样的事实,对于他们而言毫不足怪。然而,从哥白尼时***始,我们就被降级为绕着一颗非常平凡的恒星公转的一颗行星,而该恒星又是绕着我们看得见的不过是一千亿个星系中的一个典型星系的外边缘公转。我们现在是如此之谦和,我们不能声称任何在宇宙中的特殊地位。所以我们必须假定,在围绕任何其他星系的任何方向的背景也是相同的。这只有在如果宇宙的平均密度以及膨胀率处处相同时才有可能。平均密度或膨胀率的大区域的任何变化都会使微波背景在不同方向上不同。这表明,宇宙的行为在非常大尺度下是简单的,而不是混沌的。因此我们可以预言宇宙遥远的未来。  因为宇宙的膨胀是如此之均匀,所以人们可按照一个单独的数,即两个星系间的距离来描述它。现在这个距离在增大,但是人们预料不同星系之间的引力吸引正在降低这个膨胀率。如果宇宙的密度大于某个临界值,引力吸引将最终使膨胀停止并使宇宙开始重新收缩。宇宙就会坍缩到一个大挤压。这和启始宇宙的大爆炸相当相似。大挤压是被称作奇性的一个东西,是具有无限密度的状态,物理定律在这种状态下失效。这就表明即便在大挤压之后存在事件,它们要发生什么也是不能预言的。但是若在事件之间不存在因果的连接,就没有合理的方法说一个事件发生于另一个事件之后。也许人们可以说,我们的宇宙在大挤压处终结,而任何发生在“之后”的事件都是另一个相分离的宇宙的部分。这有一点像是再投胎。如果有人声称一个新生的婴儿是和某一死者等同,如果该婴儿没从他的以前的生命遗传到任何特征或记忆,这种声称有什么意义呢?人们可以同样地讲,它是完全不同的个体。  如果宇宙的密度小于该临界值,它将不会坍缩,而会继续永远膨胀下去。其密度在一段时间后会变得如此之低,引力吸引对于减缓膨胀没有任何显著的效应。星系们会继续以恒常速度相互离开。  这样,对于宇宙的未来其关键问题在于:平均密度是多少?如果它比临界值小,宇宙就将永远膨胀。但是如果它比临界值大,宇宙就会坍缩,而时间本身就会在大挤压处终结。然而,我比其他的末日预言者更占便宜。即使宇宙将要坍缩,我可以满怀信心地预言,它至少在一百亿年内不会停止膨胀。我预料那时自己不会留在世上被证明是错的。  我们可以从观测来估计宇宙的平均密度。如果我们计算能看得见的恒星并把它们的质量相加,我们得到的,不到临界值的百分之一左右。即使我们加上在宇宙中观测到的气体云的质量,它仍然只把总数加到临界值的百分之一。然而,我们知道,宇宙还应该包含所谓的暗物质,即是我们不能直接观测到的东西。暗物质的一个证据来自于螺旋星系。存在恒星和气体的巨大的饼状聚合体。我们观测到它们围绕着自己的中心旋转。但是如果它们只包含我们观测到的恒星和气体,则旋转速率就高到足以把它们甩开。必须存在某种看不见的物质形式,其引力吸引足以把这些旋转的星系牢牢抓住。  暗物质的另一个证据来自于星系团。我们观测到星系在整个空间中分布得不均匀,它们成团地集中在一起,其范围从几个星系直至几百个星系。假定这些星系互相吸引成一组从而形成这些星系团。然而,我们可以测量这些星系团中的个别星系的运动速度。我们发现其速度是如此之高,要不是引力吸引把星系抓到一起,这些星系团就会飞散开去。所需要的质量比所有星系总质量都要大很多。这是在这种情形下估算的,即我们认为星系己具有在它们旋转时把自己抓在一起的所需的质量。所以,在星系团中我们观测到的星系以外必须存在额外的暗物质。  人们可以对我们具有确定证据的那些星系和星系团中的暗物质的量作一个相当可靠的估算。但是这个估算值仍然只达到要使宇宙重新坍缩的临界质量的百分之十左右。这样,如果我们仅仅依据观测证据,则可预言宇宙会继续无限地膨胀下去。再过五十亿年左右,太阳将耗尽它的核燃料。它会肿胀成一颗所谓的红巨星,直到它把地球和其他更邻近的行星都吞没。它最后会稳定成一颗只有几千英哩尺度的白矮星。我正在预言世界的结局,但这还不是。这个预言还不至于使股票市场过于沮丧。前面还有一两个更紧迫的问题。无论如何,假定在太阳爆炸的时刻,我们还没有把自己毁灭的话,我们应该已经掌握了恒星际旅行的技术。  在大约一百亿年以后,宇宙中大多数恒星都已把燃料耗尽。大约具有太阳质量的恒星不是变成白矮星就是变成中子星,中子星比白矮星更小更紧致。具有更大质量的恒星会变成黑洞。黑洞还更小,并且具有强到使光线都不能逃逸的引力场。然而,这些残留物仍然继续绕着银河系中心每一亿年转一圈。这些残余物的相撞会使一些被抛到星系外面去。余下的会渐渐地在中心附近更近的轨道上稳定下来,并且最终会集中一起,在星系的中心形成一颗巨大的黑洞。不管星系或星系团中的暗物质是什么,可以预料它们也会落进这些非常巨大的黑洞中去。  因此可以假定,星系或星系团中的大部分物体最后在黑洞里终结。然而,我在若干年以前发现,黑洞并不像被描绘的那样黑。量子力学的不确定性原理讲,粒子不可能同时具有定义很好的位置和定义很好的速度。粒子位置定义得越精确,则其速度就只能定义得越不精确,反之亦然。如果在一颗黑洞中有一颗粒子,它的位置在黑洞中被很好地定义,这意味着它的速度不能被精确地定义。所以粒子的速度就有可能超过光速,这就使得它能从黑洞逃逸出来,粒子和辐射就这么缓慢地从黑洞中泄漏出来。在一颗星系中心的巨大黑洞可有几百万英里的尺度。这样,在它之内的粒子的位置就具有很大的不确定性。因此,粒子速度的不确定性就很小,这表明一颗粒子要花非常长的时间才能逃离黑洞。但是它最终是要逃离的。在一个星系中心的巨大黑洞可能花10↑90年的时间蒸发掉并完全消失,也就是一后面跟九十个零。这比宇宙现在的年龄要长得多,它是10↑10年,也就是一后面跟十个零。如果宇宙要永远膨胀下去的话,仍然有大量的时间可供黑洞蒸发。  永远膨胀下去的宇宙的未来相当乏味。但是一点也不能肯定宇宙是否会永远膨胀。我们只有大约为使宇宙坍缩的需要密度十分之一的确定证据。然而,可能还有其他种类的暗物质,还未被我们探测到,它会使宇宙的平均密度达到或超过临界值。这种附加的暗物质必须位于星系或星系团之外。否则的话,我们就应觉察到了它对星系旋转或星系团中星系运动的效应。  为什么我们应该认为,也许存在足够的暗物质,使宇宙最终坍缩呢?为什么我们不能只相信我们已有确定证据的物质呢?其理由在于,那怕宇宙现在只具有十分之一的临界密度,都需要不可思议地仔细选取初始的密度和膨胀率。如果在大爆炸后一秒钟宇宙的密度大了一万亿分之一,宇宙就会在十年后坍缩。另一方面,如果那时宇宙的密度小了同一个量,宇宙在大约十年后就变成基本上空无一物。  宇宙的初始密度为什么被这么仔细地选取呢?也许存在某种原因,使得宇宙必须刚好具有临界密度。看来可能存在两种解释。一种是所谓的人择原理,它可被重述如下:宇宙之所以是这种样子,是因为否则的话,我们就不会在这里观测它。其思想是,可能存在许多具有不同密度的不同宇宙。只有那些非常接近临界密度的能存活得足够久并包含足够形成恒星和行星的物质。只有在那些宇宙中才有智慧生物去访问这样的问题:密度为什么这么接近于临界密度?如果这就是宇宙现在密度的解释,则没有理由去相信宇宙包含有比我们已探测到的更多物质。十分之一的临界密度对于星系和恒星的形成已经足够。  然而,许多人不喜欢人择原理,因为它似乎太倚重于我们自身的存在。这样就有人对为何密度应这么接近于临界值寻求另外可能的解释。这种探索导至极早期宇宙的暴涨理论。其思想是宇宙的尺度曾经不断地加倍过,正如在遭受极端通货膨胀的国家每隔几个月价格就加倍一样。然而,宇宙的暴涨更迅猛更极端得多:在一个微小的暴涨中尺度的至少一千亿乙乙倍的增加,会使宇宙这么接近于准确的临界密度,以至于现在仍然非常接近于临界密度。这样,如果暴涨理论是正确的,宇宙就应包含足够的暗物质,使得密度达到临界值。这意味着,宇宙最终可能会坍缩,但是这个时间不会比迄今已经膨胀过的一百五十亿年左右长太多。  如果暴涨理论是正确的,必须存在的额外的暗物质会是什么呢?它似乎和构成恒星和行星的正常物质不同。我们可以计算出宇宙在大爆炸后的最初三分钟的极早期阶段产生的各种轻元素的量。这些轻元素的量依赖于宇宙中的正常物质的量而定。我们可以画一张图,在垂直方向标出轻元素的量,沿着水平轴是宇宙中正常物质的量。如果现在正常物质的总量大约只为临界量的十分之一,则我们可以得到和观测很一致的丰度。这些计算也可能是错误的,但是我们对于几种不同的元素得到观测到的丰度这个事实,令人印象十分深刻。  如果存在暗物质的临界密度,那么其主要候选者可能是宇宙极早阶段的残余。基本粒子是一种可能性。存在几种假想的候选者,那是些我们认为也许存在但还没有实际探测到的粒子。但是最有希望的情形是中微子,我们对它已有很好的证据。它被认为自身没有质量,但是最近一些观测暗示,中微子可能有小质量。如果这一点得到证实并发现具有恰好的数值,中微子就能提供足够的质量,使宇宙密度达到临界值。  黑洞是另一种可能性。早期宇宙可能经历过所谓的相变。水的沸腾和凝固便是相变的例子。在相变过程中原先均匀的媒质,譬如水,会发展出无规性。在水的情形下会是一大堆冰或蒸汽泡。这些无规性会坍缩形成黑洞。如果黑洞非常微小的话,它们由于早先描述的量子力学的不确定性原理的效应,迄今已被蒸发殆尽。但是,如果它们超过几十亿吨(一座山的质量),则现在仍在周围,并且很难被探测到。  对于在宇宙中均匀分布的暗物质,它对宇宙膨胀的效应是唯一探测其存在的方法。由测量遥远星系离开我们而去的速度便可确定膨胀的减慢程度。其关键在于,光离开这些星系向我们传播,所以我们是在观测在遥远的过去的这些星系。人们可以绘一张图,把星系的速度和它们的表观亮度或星等作比较,星等是它们离开我们的距离的测度。这张图上的不同曲线对应于不同的膨胀减慢率。向上弯折的曲线对应于将要坍缩的宇宙。初看起来观测似乎表示坍缩的情景。但是麻烦在于,星系的表观亮度不能很好地标度离开我们的距离。不仅在星系的本征亮度存在相当大的变化,而且还有证据说明其亮度随时间而改变。由于我们不知道允许的亮度演化是多少,所以我们还不能说减慢率是多少:它是否快到使宇宙最终坍缩,或者宇宙会继续永远膨胀下去。这必须等到我们发展出更好的测量星系距离的手段后才行。但是我们可以肯定,减慢率没有快到使宇宙在今后的几十亿年内坍缩的程度。  宇宙在一千亿年左右既不永远膨胀也不坍缩是一个非常激动人心的前景。我们是否有所作为使将来变得更加有趣呢?一种肯定可为的做法是让我们驾驶到一颗黑洞中去。它必须是一颗相当大的黑洞,比太阳质量的一百万倍还要大。在银河系的中心很可能有颗这么大的黑洞。  在一颗黑洞中会发生什么我们还不很清楚。广义相对论的方程允许这样的解,它允许人们进入一颗黑洞并从其他地方的一颗白洞里出来。白洞是黑洞的时间反演。它是一种东西只出不进的物体。在宇宙的其他部分可能会有白洞。这似乎为星系际的快速旅行提供了可能性。麻烦在于这种旅行也许是过于迅速了。如果通过黑洞的旅行成为可能,则似乎无法阻拦你在出发之前已经返回。那时你可以做一些事,譬如讲杀死你的母亲,因为她一开始就不让你进入黑洞。  看来物理定律不允许这种时间旅行,这也许对于我们(以及我们母亲们)的存活是个幸事。似乎有一种时序防御机构,不允许旅行到以前去,使得这个世界对于历史学家是安全的。如果一个人向以前旅行,似乎要发生的是,不确定性原理的效应会在那里产生大量的辐射。这种辐射要么把时空卷曲得如此之甚,以至于不可能在时间中倒退回去,要么使时空在类似于大爆炸和大挤压的奇性处终结。不管哪种情形,我们的过,去都不会受到居心叵测之徒的威胁。最近我和其他一些人进行的一些计算支持这个时序防御假设。但是,我们过去不能将来永远也不能进行时间旅行的最好证据是,我们从未遭受到从未来创的游客的侵犯。  现在小结如下:科学家相信宇宙受定义很好的定律制约,这些定律在原则上允许人们去预言将来。但是定律给出的运动通常是混沌的。这意味着初始状态的微小变化会导至后续行为的快速增大的改变。这样,人们在实际上经常只能对未来相当短的时间作准确的预言。然而,宇宙大尺度的行为似乎是简单的,而不是混沌的。所以,人们可以预言,宇宙将永远膨胀下去呢,还是最终将会坍缩。这要按照宇宙的现有密度而定。事实上,现在密度似乎非常接近于把坍缩和无限膨胀区分开创的临界密度。如果暴涨理论是正确的,则宇宙实际上是处在刀锋上。所以我正是继承那些巫师或预言者的良好传统,两方下赌注,以保万无一失。
《黑洞、婴儿宇宙及其他》内容截选:
关键词有:黑洞、
下载地址:[]
下载帮助:
☉推荐使用快车下载本站TXT电子书,使用 WinRAR 解压本站全本书籍。
☉如果这个TXT书总是不能下载请到下方发表评论报错,我们会及时帮您解决并回复,谢谢合作!!
☉下载本站全本图书,如果服务器暂不能下载请过一段时间重试!
☉如果遇到什么问题,请到报错或是到QQ群内(群号:)找管理员咨询,我们将在那里提供更多 、更好的电子书!
☉本站提供的TXT电子图书是供学习研究之用,如果喜欢,请到当当或其他书城去买正版图书。
发表评论:
网友推荐热门小说
本书相关小说
本类热门小说
本书的版权作者所有,如作者认为本站侵犯了您的版权,E-mail: 通知我们,我们立即删除!
《黑洞、婴儿》是一本很棒的书,动人的情节,优美的文笔,看后心情大悦,为了让本书的作者()能写出更好更多的极品作品!
请您购买本书或购买本书VIP和多多宣传本书,也对本类电子书的支持!中华文学文化的将来,我们共同努力,共创辉煌!
Powered by 落吧书屋人类首次直接探测到引力波 信号由黑洞合并产生,大宇宙黑洞与暗物质,人类发现了多少个黑洞,宇宙黑洞能把人类吸进去吗,宇宙上最可怕的黑洞,宇宙十大奇异黑洞现象,引力波被发现了,黑洞里面是另一个宇宙
人类首次直接探测到引力波 信号由黑洞合并产生
时间: 04:14:24 来源:综合
原标题:人类首次直接探测到引力波 信号由黑洞合并产生,大宇宙黑洞与暗物质,人类发现了多少个黑洞,宇宙黑洞能把人类吸进去吗,宇宙上最可怕的黑洞,宇宙十大奇异黑洞现象,引力波被发现了,黑洞里面是另一个宇宙
美国路易斯安那州利文斯顿市的激光干涉引力波天文台。新华社发
两个正在旋转合并的黑洞模拟图。
爱因斯坦百年前预测获证实 很有可能引发天文学革命
  爱因斯坦又对了!在这位大科学家提出引力波的预言百年之后,美国科学家11日宣布,人类首次直接探测到了引力波。这是人类第一次能够“听”到宇宙的“声音”。引力波是爱因斯坦广义相对论实验验证中最后一块缺失的“拼图”,它的发现是物理学界里程碑式的重大成果。
  我们能够“听见”宇宙了
  “女士们、先生们,我们已经探测到引力波,我们找到它了。”美国“激光干涉引力波天文台”(LIGO)执行主任戴维·赖茨当天在华盛顿举行的记者会上宣布。
  在一片嘈杂的背景噪音中,一声“噗”的清脆声响,如水滴落水,持续时间短暂得不到1秒,这正是由引力波转化成的宇宙之声。当天召开的记者会上,LIGO科学家现场播放了来自宇宙的“声音”。
  “我们能够&听见&引力波,我们能够&听见&宇宙,这是引力波最美妙的事件之一。我们将不仅&看见&宇宙,我们还将&倾听&它,”LIGO项目组发言人、路易斯安那州立大学物理学家加布里埃拉·冈萨雷斯在记者会上介绍。
  来自加州理工学院的赖茨把寻找引力波比作科学上的登月项目。“我们做到了,我们登上了这个&月球&。”他兴奋地重复道。参与记者会的还有麻省理工学院的研究人员及资助研究的美国国家科学基金会人员。
  引力波信号由黑洞合并产生
  引力波是一种时空涟漪,如同石头被丢进水里产生的波纹。黑洞、中子星等天体在碰撞过程中有可能产生引力波。100年前,爱因斯坦的广义相对论预言了引力波的存在。广义相对论的其他预言如光线的弯曲、水星近日点进动以及引力红移效应都已获证实,唯有引力波一直徘徊在科学家的“视线”之外。
  上世纪70年代,曾有美国科学家在观测双星系统的过程中,发现引力波存在的间接证据,并因此获得1993年诺贝尔物理学奖。
  在将于《物理学评论通讯》杂志发表的新研究中,科学家探测到的是由黑洞合并产生的一个时间极短的引力波信号,持续不到1秒。它经过13亿年的漫长旅行,于日抵达地球,被刚改造升级的LIGO的两个探测器以7毫秒的时间差先后捕捉到。
  据研究人员估计,两个黑洞合并前的质量分别相当于36个和29个太阳质量,合并后的总质量是62个太阳质量,3个太阳质量的能量以引力波的形式在不到1秒的时间内释放,释放的峰值能量比整个可见宇宙释放的能量还要高出约50倍。
  开启观测宇宙的新窗口
  LIGO是美国分别在路易斯安那州利文斯顿市与华盛顿州小城汉福德市建造的两个引力波探测器,改造升级后其探测灵敏度大幅提高。10多个国家超过1000名科学家参与了这个搜寻引力波的项目。
  有关LIGO发现引力波的传言已在物理学界传播了几个月,最早透露这一消息的是美国亚利桑那州立大学物理学家劳伦斯·克劳斯,但一直没有获得LIGO项目组证实。
  克劳斯11日说,发现引力波是一个“重大里程碑”,它开启了观测宇宙的一个新窗口,就像望远镜的发明或太空无线电波的发现一样。
  LIGO项目组发言人加布里埃拉·冈萨雷斯说:“这一发现是一个新时代的开端,引力波天文学现在成为现实。”
  专家讲述
  “爱因斯坦一定
  也会吓一跳”
  “我们探测到了引力波。我们做到了。”当地时间11日清晨,当LIGO执行主任、加州理工学院教授戴维·赖茨在华盛顿宣布这一消息时,挤在美国加州理工学院天文学与天体物理学中心参加同步新闻发布会的上百名科研人员沸腾了。
  长久的欢呼、掌声和泪水&&难怪科研人员这么激动,依照科学家的说法,人类探测到引力波,如同一个失聪的人突然获得听觉,从此获得感知世界的新能力。这一天,距爱因斯坦预测引力波存在已有百年。
  “我相信爱因斯坦看到今天的结果,一定也会吓一跳,”LIGO科学合作组织研究成员之一、加州理工学院物理学教授陈雁北说,“尽管他会因自己在广义相对论、量子力学、激光等多个领域的贡献感到欣慰,但百年来物理学已获得前所未有的发展。对于人类今天的成就,爱因斯坦一定无法想象。”
  爱因斯坦百年前预言引力波存在,但也曾认为,由于引力波太过微弱,它无法被探测到。参与LIGO项目的澳大利亚墨尔本大学研究员孙翎对记者说:“我们证明了爱因斯坦的正确,另一方面他也说错了,我们真的探测到了。”
  焦点科普
  捕捉引力波为啥这么难?
  引力波是非常弱的一种信号,弱到连爱因斯坦本人都曾怀疑能否建造足够灵敏的探测器,探测引力波很长一段时间内被视为“不可能完成的任务”。
  20世纪90年代起,大型激光干涉仪引力波探测器开始在全球范围内兴建,真正拉开了引力波探测黄金时代的序幕。
  美国分别在路易斯安那州利文斯顿市与华盛顿州小城汉福德市建造了两个激光干涉引力波探测器(LIGO)。LIGO拥有巨大的L形测量臂,每边各有4千米长,两端设有反射镜面。发出的一束激光沿着L形互相垂直的两边前进并被来回反射。一般情况下,激光由于干涉而互相抵消,探测器接收不到光信号,但一旦引力波经过,便会改变激光通过的距离,从而被观测到。探测引力波需要探测器具有极高的灵敏度,还需区分开来引力波信号和环境或仪器噪声。
  日北京时间17点50分45秒,位于利文斯顿与汉福德的两台探测器同时观测到了后来被命名为GW150914的引力波信号。科学家们通过进一步的数据分析还证实了这是两个黑洞合并的事件。
  在当天的记者会上,也有人问所探测到的引力波信号是不是好得过头了?LIGO项目科学家的回答是,他们花了几个月的时间进行验证,这也是为什么去年9月探测到引力波信号,却拖到今天才宣布。这些科学家还相信,随着探测器灵敏度的提高,今年应该会探测到更多引力波信号。
  探测到引力波有多重要?
  包括中国科学家在内的多国科学家认为,新发现不仅填补了广义相对论实验验证中最后一块缺失的拼图,让现代物理学的根基更加坚实,也意味着科学家抓住了揭开宇宙奥秘的“钥匙”,有助于了解宇宙的起源和运行机制。
  英国著名理论物理学家斯蒂芬·霍金表示:“引力波提供了一种人们看待宇宙的全新方式。(人类)探测到引力波的这种能力,很有可能引发天文学革命。”
  南非夸祖鲁-纳塔尔大学的引力波研究专家马寅哲说,天文学的发现几百年以来主要靠电磁光谱的测量,射电、光学、红外、X射线等天文观测手段均是在收集光,靠“看”观测宇宙。引力波的发现则将从“听”这一完全不同的角度进行天文观测,引力波天文学这一学科的大门彻底被打开。引力波将成为检验爱因斯坦相对论、探测黑洞质量、测量宇宙距离等基本问题的新窗口。
  参与该项目的美国宾夕法尼亚州立大学科学家查德·汉娜说,我们无法预测引力波天文学将如何改变对宇宙的基本认知,就像伽利略用他的小望远镜预测不了哈勃太空望远镜展现给我们的宇宙那样,“我们可以预期的是,100年后我们的后辈所知道的将与我们所知道的有天壤之别”。
  据新华社
本文相关推荐
16-01-1316-02-1216-02-1216-02-1216-02-1216-02-12

参考资料

 

随机推荐