查看: 707|回复: 1
车载微波雷达调频体制及芯片方案简介
近几年,基于微波雷达的先进驾驶辅助系统的装车率快速上升,常见应用包括前向的、ACC、自动跟车S&G,以及后向的盲区探测BSD、变道辅助LCA、侧向探测CTA等。
尽管各个应用的侧重点不同,但总体上主要通过测量目标的距离、相对速度、角度、大小、个数等参数为驾驶者提供及时可靠的预警信息。快速发展的市场要求雷达拥有更远的测量距离,更宽的探测角度、更高的测距测速精度,更短的探测时间,更多的探测目标数量,以及更可靠的探测率。
以上要求需要在系统层面作统一提升,包括天线、、基带、发率、扫频带宽、波形调制、基带算法等。作为雷达软硬件设计的基础,收发调频体制的选择对测距、测速、测向的范围、分辨率、精度、模糊度等核心指标起着关键作用。市面上介绍类似雷达调频体制的文章层出不穷,但很少有针对汽车雷达的系统化介绍。本文对量产的车载雷达中最常用的收发调频体制手段,作一简单介绍:
基带信号序列1'和2'都会经过相同的FFT和CFAR处理,在单检测目标的情况下,一个具有特定速度与距离的目标将会在两个序列FFT处理结果的同一频率处被检测到。与LFMCW类似,差频fB中同时包含了距离与速度信息,但在同一频率处两个信号的差也同样包含了距离和速度信息。因此fB和(符号1)在一个测量周期内需要同时被用到来解析距离和速度,如下式:
上面两式联立就可求得距离和速度,在这种情况下,虚假目标可以完全被避免。与LFMCW相比,由于MFSK在计算距离与速度时引入了相位差信息,在系统设计只能达到较低信噪比的情况下,其精度会有下降。