问题如图1图

(1)①60;②AD=BE;(2)∠AEB=900;AE=2CM+BE,理由见试题解析;(3)或.【解析】试题分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.试题解析:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∵AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°.故***为:60°.②∵△ACD≌△BCE,∴AD=BE.故***为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,∵CA=CB,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME,∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上,∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°,∴BD=2.∵DP=1,∴BP=.∵A、P、D、B四点共圆,∴∠APB=∠ADB=45°,∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1,∴AH=;②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD,∴=2AH﹣1,∴AH=.综上所述:点A到BP的距离为或.考点:1.圆的综合题;2.全等三角形的判定与性质;3.正方形的性质;4.圆周角定理. 
请在这里输入关键词:
科目:初中数学
来源:学年江苏省无锡市滨湖区九年级上学期期中考试数学试卷(解析版)
题型:选择题
如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x 轴上时,点A运动的路线与x轴围成的图形的面积和为 …(
科目:初中数学
来源:学年广东省云浮市郁南县三八年级上学期期中联考数学试卷(解析版)
题型:选择题
如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的是(
).A.①②③④
科目:初中数学
来源:学年江苏省无锡市九年级上学期期中考试数学试卷(解析版)
题型:解答题
(本题满分12分)如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t &0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.  
科目:初中数学
来源:学年江苏省无锡市九年级上学期期中考试数学试卷(解析版)
题型:选择题
如图,已知在Rt△ABC中,AB=AC=2,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形依次进行下去,则第n个内接正方形的边长为(
)A.·()n
B.·()nC.·()n-1
D.·()n- 
科目:初中数学
来源:学年江苏省无锡市九年级上学期期中考试数学试卷(解析版)
题型:选择题
如图,在△ABC中,DE∥BC,若 =,DE=4,则BC的值为(
D.12 
科目:初中数学
来源:学年江苏省无锡市九年级上学期期中考试数学试卷(解析版)
题型:解答题
(本题满分8分)已知关于x的一元二次方程,其中a、b、c分别为△ABC三边的长.(1)如果是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根. 
科目:初中数学
来源:学年江苏省无锡市九年级上学期期中考试数学试卷(解析版)
题型:填空题
已知圆锥的母线长为5cm,底面圆的半径长为3cm,则此圆锥的侧面积是
科目:初中数学
来源:学年江苏省无锡市八年级上学期期中考试数学试卷(解析版)
题型:解答题
(本题8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数; 
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对***更方便,扫描上方二维码立刻***!初中数学 COOCO.因你而专业 !
你好!请或
使用次数:34
入库时间:
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN. 求证:∠ABC=∠ACN.
(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
(3)如图3,在等腰△ABC中, BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN =∠ABC. 连结CN. 试探究∠ABC与∠ACN的数量关系,并说明理由.
(1)证明:∵等边△ABC,等边△AMN
∴AB=AC,AM=AN,∠BAC=∠MAN=60°
∴∠BAM=∠CAN&&&&&&&&&&&&&&&&&&
…………………………1分
∴△BAM≌△CAN(SAS)&&&&&&&&&&
…………………………2分
∴∠ABC=∠ACN&&&&&&&&&&&&&&&&&&
…………………………3分
(2)解:结论∠ABC=∠ACN仍成立&& . ………………………4分
理由如下:∵等边△ABC,等边△AMN&&
∴AB=AC, AM=AN, ∠BAC=∠MAN=60°
∴∠BAM=∠CAN&&& ∴△BAM≌△CAN& &………………………5分
∴∠ABC=∠ACN&&&&&&&&&&&&&&&&&&&
&&&………………………6分
(3)解:∠ABC=∠ACN&&&&&&&&&&&&&
&&&&………………………7分
理由如下:∵BA=BC, MA=MN,顶角∠ABC =∠AMN
∴底角∠BAC=∠MAN &&&&&&∴△ABC∽△AMN,&&& &…………………8分
∴ 又∠BAM=∠BAC-∠MAC,∠CAN =∠MAN-∠MAC
&∴∠BAM=∠CAN ∴△BAM∽△CAN&&&&&&&&&&
……………9分&&&&&&&&&&&&&&&&&&&&&&&
∴∠ABC=∠ACN &&&&&&&&&&&&&&&&&&&&&&&&&&&&&………………………10分
如果没有找到你要的试题***和解析,请尝试下下面的试题搜索功能。百万题库任你搜索。搜索成功率80%当前位置:&>&&>&
上传时间: 09:22:35&&来源:
.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l与点Q .”分别作出了下列四个图形. 其中做法错误的是(▲)
考点:作图—基本作图..
9.数学课上,四位同学围绕作图问题:&如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ&l与点Q .&分别作出了下列四个图形. 其中做法错误的是(▲)
考点:作图&基本作图..
分析:A、根据作法无法判定PQ&l;
B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;
C、根据直径所对的圆周角等于90&作出判断;
D、根据全等三角形的判定和性质即可作出判断.
解答:解:根据分析可知,
选项B、C、D都能够得到PQ&l于点Q;选项A不能够得到PQ&l于点Q.
点评:此题主要考查了过直线外以及过直线上一点作已知直线的垂线,熟练掌握基本作图方法是解题关键.
阅读统计:[]
·上一篇文章:
·下一篇文章:下面没有链接了
Copyright &
. All Rights Reserved .
站长QQ:&&知识点梳理
判定:&&(1)三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。&&(2)有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。&&(3)有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。&&(4)有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)&&(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)&所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。性质:&&(1)的对应角相等。&&(2)全等三角形的对应边相等。&&(3)全等三角形的对应边上的高对应相等。&&(4)全等三角形的对应角的角平分线相等。&&(5)全等三角形的对应边上的中线相等。&&(6)全等相等。&&(7)全等三角形周长相等。&&(8)全等三角形的对应角的相等。
【的性质】①&对应点到旋转中心的距离相等;②&对应点与旋转中心所连的夹角等于旋转角;③&旋转前、后的图形.
:直角两直角边的平方和等于斜边的平方,即如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a?+b?=c?(勾股定理公式)
【等腰直角】等腰直角三角形的性质:,等腰直角三角形是一种特殊的三角形,显然具有三角形一般的性质,如内角和为180度,稳定性等,此外还有很多特殊的性质:1.两直角边相等,两内角均为45度;2.斜边中线和垂,直角角平分线三线合一;3.等腰直角三角形三边关系:三条边的比例关系是1:1:\sqrt[]{2}
整理教师:&&
举一反三(巩固练习,成绩显著提升,去)
根据问他()知识点分析,
试题“请阅读下列材料:问题:如图1,△ABC中,∠ACB=90°,...”,相似的试题还有:
已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=\sqrt{2}CB,过程如下:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=\sqrt{2}CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=\sqrt{2}CB.(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=\sqrt{2}时,则CD=_____,CB=_____.
已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CD=______
如图,△ABC中,AC=BC,∠ACB=90°,点D在△ABC的外部,且AD⊥BD,AD交BC于点E,连接CD,过点C作CG⊥CD,交AD于点G.(1)若CG=4,求DG的长;(2)若CG=BD,求证:AB=AC+CE.

参考资料

 

随机推荐