当前位置:
>>>(9分)“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称..
(9分)“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话。小题1:⑴现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得每行的三个数、每列的三个数、斜对角的三个数之和都等于15.小题2:⑵通过研究问题⑴,利用你发现的规律,将3,5,-7,1,7,-3,9,-5,-1这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.
题型:解答题难度:中档来源:不详
小题1:小题2:(1)15÷3=5,∴最中间的数是5,其它空格填写如图1;(2)先求出所有数的和是9,根据题意,每个数都用了3次,用9÷3=3得到横、竖、斜对角的所有三个数的和等于3,然后根据3试探填入数据即可.
马上分享给同学
据魔方格专家权威分析,试题“(9分)“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称..”主要考查你对&&有理数定义及分类,正数与负数,数轴,相反数&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
有理数定义及分类正数与负数数轴相反数
有理数的定义:有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数的分类:(1)按有理数的定义:&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&正整数&&&&&&&&&&&&&&&&& 整数{&&&& 零&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &负整数 有理数{&&&&& &&&&&&&&&&&&&&&&&&&&&&&& && 正分数&&&&&&&&&&&&&&&&&分数{ &&&&&&&&&&&&&&&&&&&&&&&&&&& 负分数 &(2)按有理数的性质分类:&&&&&&&&&&&&&&&&&&&&&&&&&&&&正整数&&&&&&&&&&&&&&&& 正数{&&&&&&&&&&&&&&&&&&&&&&&&&&&&正分数 有理数{& 零&&&&&&&&&&&&&&&&&&&&&&&&&&&负整数&&&&&&&&&&&&&&&&负数{ &&&&&&&&&&&&&&&&&&&&&&&&& &负分数正数:就是大于0的(实数)负数:就是小于0的(实数)0既不是正数也不是负数。
非负数:正数与零的统称。非正数:负数与零的统称。正负数的认识:1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如:-a一定是负数吗?***是不一定,因为字母a可以表示任意的数。若a表示正数时,-a是负数;当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;当a表示负数时,-a就不是负数了,它是一个正数。
2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3.数细分有五类:正整数、正分数、0、负整数、负分数;但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。数轴定义:规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。数轴具有三要素:原点、正方向和单位长度,三者缺一不可。数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。用数轴上的点表示有理数:每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。 1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。 2.表示正数的点都在原点右边,表示负数的点都在原点左边。 3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。 数轴的画法: 1.画一条直线(一般画成水平的直线); 2.在直线上根据需要选取一点为原点(在原点下面标上“0”); 3.确定正方向(一般规定向右为正,并用箭头表示出来); 4.选取适当的长度为单位长度,从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;从原点向左,用类似的方法依次表示-1,-2,-3,…。 数轴的应用范畴:符号相反的两个数互为相反数,零的相反数是零。(如2的相反--2)在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。相反数的定义:像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。相反数的特性:1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称; 3、此时,b的相反数为-b=-(-a)=a,那么我们就说“相反数具有互称性”。4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。&(互为)相反数的代数意义:1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)2、若两个实数a和b满足b=-a。我们就说b是a的相反数。3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数。相反数的判别:我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。多重符号的化简:1、在一个数前面添加一个“+”好,所得的数与原数相同。2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。
发现相似题
与“(9分)“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称..”考查相似的试题有:
691220698724110185712814687245679045