(A3B22C22)家长学校组织机构及工作职责_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
(A3B22C22)家长学校组织机构及工作职责
上传于||暂无简介
阅读已结束,如果下载本文需要使用0下载券
想免费下载更多文档?
定制HR最喜欢的简历
你可能喜欢(2010o江苏)本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A:AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.B:在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=k001,N=0110,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.C:在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.D:设a、b是非负实数,求证:a3+b3≥ab(a2+b2). - 跟谁学
在线咨询下载客户端关注微信公众号
搜索你想学的科目、老师试试搜索吉安
在线咨询下载客户端关注微信公众号&&&分类:(2010o江苏)本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A:AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.B:在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=k001,N=0110,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.C:在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.D:设a、b是非负实数,求证:a3+b3≥ab(a2+b2).(2010o江苏)本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A:AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.B:在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.C:在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.D:设a、b是非负实数,求证:3+b3≥ab(a2+b2).科目:难易度:最佳***解:A:(方法一)证明:连接OD,则:OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,∠DOC=∠DAO+∠ODA=2∠DCO,所以∠DCO=30°,∠DOC=60°,所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC.(方法二)证明:连接OD、BD.因为AB是圆O的直径,所以∠ADB=90°,AB=2OB.因为DC是圆O的切线,所以∠CDO=90°.又因为DA=DC,所以∠DAC=∠DCA,于是△ADB≌△CDO,从而AB=CO.即2OB=OB+BC,得OB=BC.故AB=2BC.B满分(10分).由题设得由,可知A1(0,0)、B1(0,-2)、C1(k,-2).计算得△ABC面积的面积是1,△A1B1C1的面积是|k|,则由题设知:|k|=2×1=2.所以k的值为2或-2.C解:ρ2=2ρcosθ,圆ρ=2cosθ的普通方程为:x2+y2=2x,(x-1)2+y2=1,直线3ρcosθ+4ρsinθ+a=0的普通方程为:3x+4y+a=0,又圆与直线相切,所以2+42=1,解得:a=2,或a=-8.D(方法一)证明:3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=5-(b)5]=2[(a)4+(a)3(b)+(a)2(b)2+(a)(b)3+(b)4]因为实数a、b≥0,2≥0,[(a)4+(a)3(b)+(a)2(b)2+(a)(b)3+(b)4]≥0所以上式≥0.即有3+b3≥ab(a2+b2).(方法二)证明:由a、b是非负实数,作差得3+b3-ab(a2+b2)=2a(a-b)+b2b(b-a)=5-(b)5]当a≥b时,,从而5≥(b)5,得5-(b)5]≥0;当a<b时,,从而5<(b)5,得5-(b)5]<0;所以3+b3≥ab(a2+b2).解析A、连接OD,则OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,再证明OB=BC=OD=OA,即可求解.B、由题设得,根据矩阵的运算法则进行求解.C、在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,由题意将圆和直线先化为一般方程坐标,然后再计算a值.D、利用不等式的性质进行放缩证明,3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)然后再进行讨论求证.知识点:&&&&&&基础试题拔高试题热门知识点最新试题
关注我们官方微信关于跟谁学服务支持帮助中心