什么是人工神经网络算法?

您的位置: >
人工神经网络,人工神经网络是什么意思
神经网络是一门活跃的边缘***叉学科.研究它的发展过程和前沿问题,具有重要的理论意义。
人工神经网络(ANN)是以计算机网络系统模拟生物神经网络的智能计算系统。网络上的每个结点相当于一个神经元,经可以记忆(存储)、处理一定的信息,并与其它结点并行工作。求解一个问题是向人工神经网络的某些结点输入信息,各结点处理后向其它结点输出,其它结点接受并处理后再输出,直到整个神经网工作完毕,输出最后结果。如同生物的神经网络,并非所有神经元每次都一样地工作。如视、听、摸、想不同的事件(输入不同),各神经元参与工作的程度不同。当有声音时,处理声音的听觉神经元就要全力工作,视觉、触觉神经元基本不工作,主管思维的神经元部分参与工作;阅读时,听觉神经元基本不工作。在人工神经网络中以加权值控制结点参与工作的程度。正权值相当于神经元突触受到刺激而兴奋,负权值相当于受到抑制而使神经元麻痹直到完全不工作。
如果通过一个样板问题“教会”人工神经网络处理这个问题,即通过“学习”而使各结点的加权值得到肯定,那么,这一类的问题它都可以解。好的学习算法会使它不断积累的知识,根据不同的问题自动调整一组加权值,使它具有良好的自适应性。此外,它本来就是一部分结点参与工作。当某结点出故障时,它就让功能相近的其它结点顶替有故障结点参与本题工作,使系统不致中断。所以,它有很强的容错能力。
人工神经网络通过样板的“学习和培训”,可记忆、客观事物在空间、时间方面比较复杂的关系,特点适合于解决各类预测、分类、评估匹配、识别等问题。例如,将人工神经网络上的各个结点模拟各地气象站,根据某一时刻的采样参数(压强、湿度、风速、温度),同时计算后将结果输出到下一个气象站,则可模拟出未来气候参数的变化,做出准确预报。即使有突变参数(如风暴,寒流)也能正确计算。所以,人工神经网络在经济分析、市场预测、金融趋势、化工最优过程、航空航天器的飞行控制、医学、环境保护等领域都有应用的前景。
由于人工神经网络是大规模分布式计算机系统,其运行时间和结点数的平方成正比,而结点数越多计算越准确,所以要求高速廉价的器件。此外,学习算法的优劣影响整个系统的性能。目前在较复杂的系统中数学优化的问题尚待进一步解决。尽管如此,和其它智能技术一样,在某些局部领域已有商品软硬件投入市场。
事实上,探究大脑--思维--计算之间的关系还刚刚开始,道路还十分漫长,关于脑的计算原理及其复杂性;关于学习、联想和记忆过程的机理及其模拟等方面的研究已受到人们的关注 ,它未来的发展必将是激动人心的.神经网络理论的前沿问题将渗透在21世纪科学的挑战性 问题中,可能取得重大的突破.
人工神经网络人类的思维能力来自人脑;人脑是一个非常复杂而又高度灵活的神经网络。它大约由1011个神经元构成,每个神经元上有突触,又与大约103个其他神经元相连,形成复杂的生物神经网络。人们通过研究探索人脑神经网络的结构、功能以及它工作的机制,来研究人脑思维和智能活动的规律。人工神经网络(Artificial Neural Networks,ANN)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在这一模型中,大量的节点(或称“神经元”,或“单元”)之间相互联接构成网络,即“神经网络”,以达到处理信息的目的。
人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。国际著名的神经网络研究专家,第一家神经计算机公司的创立者 与领导人Hecht--Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连 续或断续的输入作状态相应而进行信息处理。” 这一定义是恰当的。 人工神经网络的研究,可以追溯到 1957年Rosenblatt提出的感知器(Perceptron)模型 。它几乎与人工智能----AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。直到80年代,获得了关于 人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对 人工神经网络发生了兴趣,导致神经网络的复兴。 目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络 BP算法,Hopfield网络模型,自适应共振理 论,自组织特征映射理论等。人工神经网络是在现代神经科学的基础上提出来的。它虽然反映了人脑功能的基本特征,但远不是自然 神经网络的逼真描写,而只是它的某种简化抽象和模拟。
人工神经网络的以下几个突出的优点使它近年来引起人们的极大关注:
(1)可以充分逼近任意复杂的非线性关系;
(2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性;
(3)采用并行分布处理方法,使得快速进行大量运算成为可能;
(4)可学习和自适应不知道或不确定的系统;
(5)能够同时处理定量、定性知识。
人工神经网络的特点和优越性,主要表现在三个方面:
第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就 会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提 供经济预测、市场预测、效益预测,其应用前途是很远大的。
第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型 人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
人工神经网络的应用研究可分为以下两类:
1).神经网络的软件模拟和硬件实现的研究。
2).神经网络在各个领域中应用的研究。这些领域主要包括:模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。 随着神经网络理论本身以及相关理论、相关技术的不断 发展,神经网络的应用定将更加深入。
非常好我支持^.^
不好我反对
相关阅读:
( 发表人:admin )
评价:好评中评差评
技术交流、我要发言
发表评论,获取积分! 请遵守相关规定!提 交
Copyright &
.All Rights Reserved人工神经网络的内容有哪些?_电工电气_中国百科网
人工神经网络的内容有哪些?
    人工神经网络(12)
人工神经网络的内容有哪些?
人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:
(1)前向网络 网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。
(2)反馈网络 网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。
学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。
研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。一个奇异吸引子有如下一些特征:(1)奇异吸引子是一个吸引子,但它既不是不动点,也不是周期解;(2)奇异吸引子是不可分割的,即不能分为两个以及两个以上的吸引子;(3)它对初始值十分敏感,不同的初始值会导致极不相同的行为。
人工神经网络-优越性
工神经网络的特点和优越性,主要表现在三个方面:
第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。
第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
人工神经网络-研究方向
神经网络的研究可以分为理论研究和应用研究两大方面。
理论研究可分为以下两类:
1、利用神经生理与认知科学研究人类思维以及智能机理。
2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。
应用研究可分为以下两类:
1、神经网络的软件模拟和硬件实现的研究。
2、神经网络在各个领域中应用的研究。这些领域主要包括:
模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。
收录时间:日 23:17:49 来源:电子发烧友网 作者:匿名
上一篇: &(&&)
创建分享人
喜欢此文章的还喜欢
Copyright by ;All rights reserved. 联系:QQ:苹果/安卓/wp
积分 461, 距离下一级还需 339 积分
权限: 自定义头衔, 签名中使用图片
道具: 彩虹炫, 涂鸦板, 雷达卡, 热点灯, 金钱卡, 显身卡, 匿名卡, 抢沙发下一级可获得
权限: 隐身
购买后可立即获得
权限: 隐身
道具: 金钱卡, 彩虹炫, 雷达卡, 热点灯, 涂鸦板
开心签到天数: 10 天连续签到: 1 天[LV.3]偶尔看看II
小弟最近刚接触人工神经网络,这种模型是不是需要专门的软件,望高手解答,如果有的话能否传一下
载入中......
鼓励积极发帖讨论
总评分:&经验 + 20&
热心指数 + 1&
呵呵。想给你传,是没有办法的。建议你使用matlab软件,209a版本的大概在5.4g以上,所以没有办法给你传。神经网络的实现,大多数情况下是用matlab软件自己编写程序,当然matlab也有一个神经网络工具箱,只能解决一般的问题,稍微复杂一些的,需要你自己去写程序。
推荐你去Matlab中文论坛或人大论坛matalb板块,去下载神经网络的方面的资料,去慢慢学习。
热心帮助其他会员
总评分:&经验 + 60&
论坛币 + 20&
学术水平 + 1&
热心指数 + 1&
信用等级 + 1&
菲利克斯_经济学人
好多软件都能做的,有的也提供可视化操作界面
好滴,谢谢,我试试看吧
国内的软件DPS可以实现BP和径向,操作简单
需要的,谢谢!!!!!!!!!!!!!!!!!!
可以分析人工神经网络的软件挺多的,楼主可以都学习下
大大的支持,十分的支持
这些软件有没有可以API,或者是源代码?
可以用R软件,免费的,用nnet包就可以了。
所谓模型,就是用统计语言简化了的现实世界;越贴近实际情况,效果越佳。
初级学术勋章
初级学术勋章
初级热心勋章
初级热心勋章
中级热心勋章
中级热心勋章
初级信用勋章
初级信用勋章
无限扩大经管职场人脉圈!每天抽选10位免费名额,现在就扫& 论坛VIP& 贵宾会员& 可免费加入
加入我们,立即就学扫码下载「就学」app& Join us!& JoinLearn&
  |
  |
  |
  |
  |
  |
如有投资本站或合作意向,请联系(010-);
邮箱:service@pinggu.org
投诉或不良信息处理:(010-)
京ICP证090565号
京公网安备号
论坛法律顾问:王进律师机器学习算法汇总:人工神经网络、深度学习及其它
发表于 14:59|
来源IT经理网|
摘要:机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里我们将为您总结一下常见的机器学习算法,以供您在工作和学习中参考。
【编者按】机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。本文来自IT经理网。
免费订阅“CSDN云计算”微信公众号,实时掌握第一手云中消息!
CSDN作为国内最专业的云计算服务平台,提供云计算、大数据、虚拟化、数据中心、OpenStack、CloudStack、Hadoop、Spark、机器学习、智能算法等相关云计算观点,云计算技术,云计算平台,云计算实践,云计算产业资讯等服务。
以下为原文:
根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。
监督式学习:
在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic
Regression)和反向传递神经网络(Back Propagation Neural Network)
非监督式学习:
在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。
半监督式学习:
在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph
Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。
强化学习:
在这种学习模式下,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立刻作出调整。常见的应用场景包括动态系统以及机器人控制等。常见算法包括Q-Learning以及时间差学习(Temporal
difference learning)
在企业数据应用的场景下, 人们最常用的可能就是监督式学习和非监督式学习的模型。 在图像识别等领域,由于存在大量的非标识的数据和少量的可标识数据,
目前半监督式学习是一个很热的话题。 而强化学习更多的应用在机器人控制及其他需要进行系统控制的领域。
算法类似性
根据算法的功能和形式的类似性,我们可以把算法分类,比如说基于树的算法,基于神经网络的算法等等。当然,机器学习的范围非常庞大,有些算法很难明确归类到某一类。而对于有些分类来说,同一分类的算法可以针对不同类型的问题。这里,我们尽量把常用的算法按照最容易理解的方式进行分类。
回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。在机器学习领域,人们说起回归,有时候是指一类问题,有时候是指一类算法,这一点常常会使初学者有所困惑。常见的回归算法包括:最小二乘法(Ordinary
Least Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(Multivariate
Adaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing)
基于实例的算法
基于实例的算法常常用来对决策问题建立模型,这样的模型常常先选取一批样本数据,然后根据某些近似性把新数据与样本数据进行比较。通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。常见的算法包括
k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing
Map , SOM)
正则化方法
正则化方法是其他算法(通常是回归算法)的延伸,根据算法的复杂度对算法进行调整。正则化方法通常对简单模型予以奖励而对复杂算法予以惩罚。常见的算法包括:Ridge
Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic
决策树学习
决策树算法根据数据的属性采用树状结构建立决策模型, 决策树模型常常用来解决分类和回归问题。常见的算法包括:分类及回归树(Classification
And Regression Tree, CART), ID3&(Iterative Dichotomiser 3), C4.5,
Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random
Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM)
贝叶斯方法
贝叶斯方法算法是基于贝叶斯定理的一类算法,主要用来解决分类和回归问题。常见算法包括:朴素贝叶斯算法,平均单依赖估计(Averaged One-Dependence
Estimators, AODE),以及Bayesian Belief Network(BBN)。
基于核的算法
基于核的算法中最著名的莫过于支持向量机(SVM)了。 基于核的算法把输入数据映射到一个高阶的向量空间, 在这些高阶向量空间里, 有些分类或者回归问题能够更容易的解决。
常见的基于核的算法包括:支持向量机(Support Vector Machine, SVM), 径向基函数(Radial Basis Function
,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等。
聚类,就像回归一样,有时候人们描述的是一类问题,有时候描述的是一类算法。聚类算法通常按照中心点或者分层的方式对输入数据进行归并。所以的聚类算法都试图找到数据的内在结构,以便按照最大的共同点将数据进行归类。常见的聚类算法包括
k-Means算法以及期望最大化算法(Expectation Maximization, EM)。
关联规则学习
关联规则学习通过寻找最能够解释数据变量之间关系的规则,来找出大量多元数据集中有用的关联规则。常见算法包括 Apriori算法和Eclat算法等。
人工神经网络
人工神经网络算法模拟生物神经网络,是一类模式匹配算法。通常用于解决分类和回归问题。人工神经网络是机器学习的一个庞大的分支,有几百种不同的算法。(其中深度学习就是其中的一类算法,我们会单独讨论),重要的人工神经网络算法包括:感知器神经网络(Perceptron
Neural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-Organizing
Map, SOM)。学习矢量量化(Learning Vector Quantization, LVQ)
深度学习算法是对人工神经网络的发展。 在近期赢得了很多关注, 特别是
, 更是在国内引起了很多关注。& 在计算能力变得日益廉价的今天,深度学习试图建立大得多也复杂得多的神经网络。很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。常见的深度学习算法包括:受限波尔兹曼机(Restricted
Boltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network),
堆栈式自动编码器(Stacked Auto-encoders)。
降低维度算法
像聚类算法一样,降低维度算法试图分析数据的内在结构,不过降低维度算法是以非监督学习的方式试图利用较少的信息来归纳或者解释数据。这类算法可以用于高维数据的可视化或者用来简化数据以便监督式学习使用。常见的算法包括:主成份分析(Principle
Component Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS),
Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS), &投影追踪(Projection Pursuit)等。
集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习结果整合起来。这是一类非常强大的算法,同时也非常流行。常见的算法包括:Boosting,
Bootstrapped Aggregation(Bagging), AdaBoost,堆叠泛化(Stacked Generalization,
Blending),梯度推进机(Gradient Boosting Machine, GBM),随机森林(Random Forest)。
原文链接:
推荐阅读相关主题:
CSDN官方微信
扫描二维码,向CSDN吐槽
微信号:CSDNnews
相关热门文章引入人工神经网络技术
Arificial Neural Networks
基于人工神经网络的突发环境事故应急系统 Environmental Emergency Decision upport System Based on Artificial Neural Networks 王波 廖振良 李怀正--维普资讯
《四川环境》
2010年第1期
突发环境事故现场具有形势紧迫、信息获取困难等特点,引入人工神经网络技术(Arificial Neural Networks,ANN)设计开发的突发环境事故应急决策支持系统(ANN--EEDSS),能够完成现场应急指挥调度的定量化决策支
基于1个网页-
将人工神经网络技术引入焊接专家系统,建立了多种焊接规范参数设计网络模型。
The artificial neural network was introduced into welding expert system and a series of neural network models were set up by the authors for the design of welding parameters.
为解决汽车安全气囊适时、正确触发问题,将模糊逻辑与人工神经网络技术引入汽车安全气囊触发控制算法研究。
The fuzzy logic and artificial neural network technologies are introduced into the algorithm for airbag deployment control, with a view to the appropriate and correct deployment of the airbag.
将人工神经网络技术(ANN)引入点焊领域,建立了点焊工艺参数选择ANN系统和点焊接头质量预测ANN系统。
This paper proposes a procedure for artificial neural network (ANN) in spot welding, and establishes spot welding parameter selecting ANN systems and spot welding joint quality predicting ANN systems.
$firstVoiceSent
- 来自原声例句
请问您想要如何调整此模块?
感谢您的反馈,我们会尽快进行适当修改!
请问您想要如何调整此模块?
感谢您的反馈,我们会尽快进行适当修改!

参考资料

 

随机推荐