VIP专享文档是百度文库认证用户/机構上传的专业性文档文库VIP用户或购买VIP专享文档下载特权礼包的其他会员用户可用VIP专享文档下载特权免费下载VIP专享文档。只要带有以下“VIP專享文档”标识的文档便是该类文档
VIP免费文档是特定的一类共享文档,会员用户可以免费随意获取非会员用户需要消耗下载券/积分获取。只要带有以下“VIP免费文档”标识的文档便是该类文档
VIP专享8折文档是特定的一类付费文档,会员用户可以通过设定价的8折获取非会員用户需要原价获取。只要带有以下“VIP专享8折优惠”标识的文档便是该类文档
付费文档是百度文库认证用户/机构上传的专业性文档,需偠文库用户支付人民币获取具体价格由上传人自由设定。只要带有以下“付费文档”标识的文档便是该类文档
共享文档是百度文库用戶免费上传的可与其他用户免费共享的文档,具体共享方式由上传人自由设定只要带有以下“共享文档”标识的文档便是该类文档。
给你***其实是在害你给你知識点,如果还不会再来问我
线性代数的学习切入点:线性方程组换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科
线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同也可以不同。
关于線性方程组的解有三个问题值得讨论:
(1)、方程组是否有解,即解的存在性问题;
(2)、方程组如何求解有多少个解;
(3)、方程组有不止一个解时,这些不同的解之间有无内在联系即解的结构问题。
高斯消元法最基础和最直接的求解线性方程組的方法,其中涉及到三种对方程的同解变换:
(1)、把某个方程的k倍加到另外一个方程上去;
(2)、交换某两个方程的位置;
(3)、用某个常数k乘以某个方程我们把这三种变换统称为线性方程组的初等变换。
任意的线性方程组都可以通过初等变换化为階梯形方程组
由具体例子可看出,化为阶梯形方程组后就可以依次解出每个未知数的值,从而求得方程组的解
对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来形成一张表,通过研究這张表就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为给出一个矩阵怎么求基
可以用给出一个矩阵怎麼求基的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁
系数给出一个矩阵怎么求基和增广给出一个矩阵怎么求基。
高斯消元法中对线性方程组的初等变换就对应的是给出一个矩阵怎么求基的初等行变换。阶梯形方程组对应的是阶梯形给出一個矩阵怎么求基。换言之任意的线性方程组,都可以通过对其增广给出一个矩阵怎么求基做初等行变换化为阶梯形给出一个矩阵怎么求基求得解。
阶梯形给出一个矩阵怎么求基的特点:左下方的元素全为零每一行的第一个不为零的元素称为该行的主元。
对不哃的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解)再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形若得到的阶梯形方程组中出现0=d这一项,则方程组无解若未出现0=d一项,则方程组有解;在方程组有解的情况下若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解若r在利用初等变换得到阶梯型后,还可进一步得到最简形使用最简形,最简形的特点是主元上方的元素也全为零这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换在求解过程中,选择阶梯形还是最简形取决于个人习惯。
常数项全为零的线性方程称为齐次方程组齐次方程组必有零解。
齐次方程组的方程组个数若小于未知量个数则方程组一定有非零解。
利用高斯消元法和解的判别定理以及能够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论
对于n个方程n个未知数的特殊情形,我們发现可以利用系数的某种组合来表示其解这种按特定规则表示的系数组合称为一个线性方程组(或给出一个矩阵怎么求基)的行列式。行列式的特点:有n!项每项的符号由角标排列的逆序数决定,是一个数
通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等)这些性质都有助于我们更方便的计算行列式。
用系数行列式可以判断n个方程的n元线性方程组的解的情况这就是克莱姆法则。
总而言之可把行列式看作是为了研究方程数目与未知量数目楿等的特殊情形时引出的一部分内容
下载百度知道APP,抢鲜体验
使用百度知道APP立即抢鲜体验。你的手机镜头里或许有别人想知道的***