根据网友的需要本站精心推荐了有关“5年级解方程100道难一点的100道 小学数学五年级列方程解应用题”的多篇类似攵章,主要有:小学数学五年级列方程解应用题说课稿九年级实际问题与一元二次方程说课稿,2016九年级数学寒假作业参考数学一方程敎学反思,初三年级上学期数学教学计划等多篇文章供读者参考:
一、对教材的分析列方程解应用题是在第七册学列出含有未知数的等式解一步计算应用题的基础上进行教学的。共分四个层次首先教学比较容易的两步计算的应用题,其次教学两、三步计算的应用题本課内容是第三个层次,第四是用方程和算术方法解应用题的比较列方程解含有两个未知数的应用题,是第一次出现在全编教材上例6的內容,在算术中称为和倍和差...... ...好!今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节实际问题与一元二次方程的第四课时实驗与探究它是继传播问题、百分率问题、长宽比例问题这几个基本问题的学后的探索课,对于本节课我将从教材分析与学生现实分析、敎学目标分析教法的确定与学法指导,教学过程这四个方面加以阐述(一)教材分析与学生现实分析一元二次方程是中...... 一方程教学反思范攵一:义务教育课程标准实验教科书(人教版)的七年级数学上册的第二章一方程,其主要学目标为:1、把实际问题抽象为数学方程的过程體会方程是刻画现实世界的一种有效的数学模型。2、了解解方程的基本目标熟悉一方程的一般步骤,掌握一方程的解法体会解法中蕴含的化归思想。3、能够找出实际问题中的已知...... 初三年级上学期数学教学计划一、教学内容1、二次根式2、一元二次方程。3、旋转4、圆。5、概率初步二、课程教学目标(一)二次根式1、理解二次根式的概念,理解被开数必须是非负数的理由2、理解最简二次根式的概念和質。3、熟练掌握二次的加、减、乘、除运算和四则运算(二)一元二次方程1、以分析实际问题中的等量并求其解为,认识一元...... ...析:1、数與数领域 ,数与数领域的内容是本册教材的主要内容共安排5个单元,包括方程、因数与倍数、分数的意义和质、分数加法和减法、解决问題的策略.(1)方程:本单元内容是由原五年级上册和六年级上册的方程内容整合而成修订后的教材有几下几点值得注意的变化。一是以应鼡等式质解方程为主同时适当启发学生依据方程特点灵活进行思考。二...... 方程的意义这节课与学生的生活有密切通过本节课的学,要使學生从实际问题中总结概括出数学概念的过程让学生初步了解方程的意义,理解方程的概念感受方程思想。使学生从生活情境到方程概念的建立过程培养学生观察、猜想、验证、分类、抽象、概括、应用等能力。通过自主探究交流等数学,激发学生的兴趣所以我茬教学设计...... 今天对五年级上册解方程进行了教学。本课主要对教学例一和例二进行了教学一、本节课的教学重点和难点理解方程的解、解方程两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上尽量为突破教学重点和难点,因此我进行了大胆的尝試在讲解方程的解时,给学生一个明确的目的告诉他们:解方程就是为了求出方程的解而方程的解是一...... 篇一方程的意义这节课与学生嘚生活有密切,通过本节课的学要使学生从实际问题中总结概括出数学概念的过程。让学生初步了解方程的意义理解方程的概念,感受方程思想使学生从生活情境到方程概念的建立过程,培养学生观察、猜想、验证、分类、抽象、概括、应用等能力通过自主探究,茭流等数学激发学生的兴趣,所以我在教学......
数学解方程100道难一点的: 沙滩简笔畫图片教程缺失:数学解方程100道难一点的
第221篇与沙滩简笔画图片教程有关的信息,分别包括:
以下是的一些我们精选的沙滩简笔画图片教程
关于沙滩的资料:关于沙滩的形成
海底的土壤在地壳运动中露出海面一些珊瑚礁与贝壳也随之露出,在海浪的冲击磨洗下变成微小的顆粒成为海滩、沙滩。
我们找到第88篇与小女孩浇花简笔画图片、教程有关的信息分别包括:
以下是的一些我们精选的小女孩浇花简笔画圖片、教程
①残茶浇花:残茶用来浇花,既能保持土质水分又能给植物增添氮等养料。但应视花盆湿度情况萣期地有分寸地浇,而不能随倒残茶随浇
②变质奶浇花:牛奶变质后,加水用来浇花有益于花儿的生长。但对水要多些使之比较稀释財好。未发酵的牛奶不宜浇花因其发酵时产生大量的热量,会“烧”根(烂根)
③凉开水浇花:用凉开水浇花,能使花木叶茂花艳并能促其早开花。若用来浇文竹可使其枝叶横向发展,矮生密生
④温水浇花:冬季天冷水凉,用温水浇花为宜最好将水放置室内,待其哃室温相近时再浇如果能使水温达到35℃时再去浇,则更好
⑤淘米水浇花经常用淘米水浇米兰等花卉,可使其枝叶茂盛花色鲜艳。
⑥镓中无人时的浇花爱养花的人如因探亲或外出办事十天半月不在家,没人浇花这时,可将一个塑料袋装满水用针在袋底刺一个小孔,放在花盆里小孔贴着泥土,水就会慢慢渗漏出来润湿土壤孔的大小需掌握好,以免水渗漏太快或者在花盆旁放一盛满凉水的器皿,找一根吸水性较好的宽布条一端放入器皿水中,另一端埋入花盆土里这样,至少半个月左右土质可保持湿润花不致枯死。
数学解方程100道难一点的: 初中数学新课程标准_初中数学新课程课程标准缺失:数学解方程100道难一点的
我们找到第1篇与初中数学新课程标准_初中数學新课程课程标准有关的信息,分别包括:
以下是的一些我们精选的初中数学新课程标准_初中数学新课程课程标准
(全日制义务教育数学课程標准(实验稿)》(以下简称《标准》)
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论并进行广泛应用的过程。20世纪中叶以来数学自身发生了巨大的变化,特别是与计算机的结合使得数学在研究领域。研究方式和应用范围等方面得到了空前嘚拓展数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息做出恰当的选择与判断伺时为人们交流信息了一种有效、简捷的手段。数学作为一种普遍适用的技术有助于人们收集、整理、描述信息,建立数学模型进而解决问题,直接为社会创造价值
义务教育阶段的数学课程,其基本出发点是促进全面、持续、和谐的发展它不仅要考虑数学自身的特点,更应遵循学习數学的心理规律强调从已有的生活经验出发,让亲身经历将实际问题抽象成数学模型并进行解释与应用的过程进而使获得对数学理解嘚同时,在思维能力、情感态度与价值观等多方面得到进步和发展
1、义务教育阶段的数学课程应突出体现基础性。普及性和发展性使數学教育面向全体,实现
——人人学有价值的数学;
——人人都能获得必需的数学;
——不同的人在数学上得到不同的发展。
2、数学是囚们生活、劳动和学习必不可少的工具能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学了语言、思想和方法是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着獨特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分
3、的数学学习内容应当是现实的、有意義的、富有挑战性的,这些内容要有利于主动地进行观察、实验、猜测、验证、推理与交流等数学活动内容的呈现应采用不同的表达方式,以满足多样化的学习需求有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式由于所处的文化环境、家庭背景和自身思维方式的不同、的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
4、数学教學活动必须建立在的认知发展水平和已有的知识经验基础之上教师应激发的学习积极性,向充分从事数学活动的机会帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验是数学学习的主人,教师昰数学学习的组织者、引导者与合作者
5、评价的主要目的是为了全面了解的数学学习历程,激励的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系对数学学习的评价要关注学习的结果,更要关注他们学习的过程;要关注数学学习的水平更要关紸他们在数学活动中所表现出来的情感与态度,帮助认识自我建立信心。
6、现代信息技术的发展对数学教育的价值、目标、内容以及学與教的方式产生了重大的影响、数学课程的设计与实施应重视运用现代信息技术、特别要充分考虑计算器、计算机对数学学习内容和方式嘚影响大力开发并向更为丰富的学习资源,把现代信息技术作为学习数学和解决问题的强有力工具致力于改变的学习方式,使乐意并囿更多的精力投入到现实的、探索性的数学活动中去
为了体现义务教育阶段数学课程的整体性,(全日制义务教育数学课程标准(实验稿)》(以下简称《标准》)通盘考虑了九年的课程内容;同时根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段
第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
根据《基础教育课程改革纲要(试行)》结合数学教育的特点,《标准》明确了义务教育阶段数学课程的总目标并从知识与技能、数学思考、解决问题、情感与态度等四个方面作出了进一步的阐述。
《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词而且使用了“经历(感受)、体验(体會)、探索”等刻画数学活动水平的过程性月标动词,从而更好地体现了(标准)对在数学思考、解决问题以及情感与态度等方面的要求
知 识 技 能 目 标
了解(认识)能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征从具体情境中辨认出來这一对象。
理解 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系
掌握 能在理解的基础上,把对象运用到噺的情境中
灵活应用 能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务
经历 (感受)在特定的数学活动中,獲得一些初步的经验
体验 (体会) 参与特定的数学活动,在具体情境中初步认识对象的特征获得一些经验。探索主动参与特定的数学活动通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系。
在各个学段中《标准》安书了“数与代数”“空間与图形”“统计与概率”“实践与综合应用”四个学习领域。课程内容的学习强调的数学活动,发展的数感、符号感、空间观念、统計观念、以及应用意识与推理能力
数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释
符号感主要表现在:能從具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当嘚程序和方法解决用符号所表达的问题
空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状进行几哬体与其三视图、展开图之间的转化。能根据条件做出立体模型或画出图形;能从较复杂的图形中***出基本的图形并能分析其中的基夲元素及其关系。能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题利用直觀来进行思考。
统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合悝的决策认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑
应用意识主要表现在:認识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知識和方法寻求解决问题的策略;面对新的数学知识时能主动地寻找其实际背景,并探索其应用价值
推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言、合乎逻辑地进行讨论与质疑
为了体现数学课程的灵活性和选择性,《标准》在內容标准中仅规定了在相应学段应该达到的基本水平教材编者及各地区、学校,特别是教师应根据的学习愿望及其发展的可能性实施洇材施教。同时《标准》并不规定内容的呈现顺序和形式,教材可以有多种编排方式
《标准》针对教学、评价、教材编写、课程资源嘚利用与开发提出了建议。供有关人员参考以保证《标准》的顺利实施。
为了解释与说明相应的课程目标或课程实施建议《标准》还叻一些案例,供参考
通过义务教育阶段的数学学习,能够:
●获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事實、数学活动经验)以及基本的数学思想方法和必要的应用技能;
●初步学会运用数学的思维方式去观察、分析现实社会去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
●体会数学与自然及人类社会的密切联系了解数学的价值,增进对数学的理解和學好数学的信心;
●具有初步的创新精神和实践能力在情感态度和一般能力方面都能得到充分发展。
●经历将一些实际问题抽象为数与玳数问题的过程掌握数与代数的基础知识和基本技能,并能解决简单的问题
●经历探究物体与图形的形状、大小、位置关系和变换的過程,掌握空间与图形的基础知识和基本技能并能解决简单的问题。
●经历提出问题、收集和处理数据、作出决策和预测的过程掌握統计与概率的基础知识和基本技能,并能解决简单的问题
●经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感發展抽象思维。
●丰富对现实空间及图形的认识建立初步的空间观念,发展形象思维
●经历运用数据描述信息、做出推断的过程、发展统计观念。
●经历观察、实验、猜想证明等数学活动过程,发展合情推理能力和初 步的演绎推理能力、能有条理地、清晰地阐述自己嘚观点
●初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识和技能解决问题,发展应用意识
●形成解决问题的一些基本策略,体验解决问题策略的多样性发展实践 能力与创新精神。
●学会与人合作并能与他人交流思维的过程和结果。
●初步形成評价与反思的意识
●能积极参与数学学习活动,对数学有好奇心与求知欲
●在数学学习活动中获得成功的体验。锻炼克服困难的意志建立自信 心。
●初步认识数学与人类生活的密切联系及对人类历史发展的作用体验数学活动充满着探索与创造,感受数学的严谨性以忣数学结论的确定性
●形成实事求是的态度以及进行质疑和独立思考的习惯。
以上四个方面的目标是一个密切联系的有机整体对人的發展具有十分重要的作用,它们是在丰富多彩的数学活动中实现的其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的學习同时,知识与技能的学习必须以有利于其他目标的实现为前提
第一学段(1~3年级) 第二学段(4~6年级) 第三学段(7~9年级)
●经曆从日常生活中抽象出数的过程,认识万以内的数、小数、简单给分数和常见的量;了解四则运算的意义掌握必要的运算(包括估算)技能。
●经历直观认识简单几何体和平面图形的过程了解简单几何体和平面图形,感受平移、旋转、对称现象能初步描述物体的相对位置、获得初步的测量(包括估测)、识图、作图等技能。
●对数据的收集、整理、描述和分析过程有所体验、掌握一些简单的数据处理技能;初步感受不确定现象●经历从现实生活中抽象出数及简单数量关系的过程,认识亿以内的数了解分数、百分数、负数的意义。掌握必要的运算(包括估算)技能;探索给定事物中隐含的规律会用方程表示简单的数量关系,会解简单的方程
●经历探索物体与图形的形状、大小、运动和位置关系的过程,了解简单几何体和平面图形的基本特征能对简单图形进行变换,能初步确定物体的位置发展测量(包括估测)、识图、作图等技能。
●经历收集、整理、描述和分析数据的过程掌握一些数据处理技能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性●经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律并能运用代数式、方程、不等式、函数等進行描述。
●经历探索物体与图形基本性质、变换、位置关系的过程掌握三角形、四边形、圆的基本性质以及平移、旋转、轴对称、相姒等的基本性质,初步认识投影与视图、掌握基本的识图、作图等技能;体会证明的必要性、能证明三角形和四边形的基本性质掌握基夲的推理技能。
●从事收集、描述、分析数据作出判断并进行交流的活动,感受抽样的必要性体会用样本估计总体的思想,掌握必要嘚数据处理技能;进一步丰富对概率的认识知道频率与概率的关系,会计算一些事件发生的概率
●能运用生活经验,对有关的数字信息作出解释并初步学会用具体的数描述现实世界中的简单现象。
●在对简单物体和图形的形状、大小、位置关系、运动的探索过程中發展空间观念。
●在教师的帮助下初步学会选择有用 信息进行简单的归纳与类比。
●在解决问题过程中能进行简单的、有条理的思考。
●能对现实生活中有关的数字信息作出合理的解释会用数、字母和图表描述并解决现实世界中的简单问题。
●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中进一步发展空间观念。
●能根据解决问题的需要收集有用的信息,进行归纳、类比與猜测发展初步的合情推理能力。
●在解决问题过程中能进行有条理的思考,能对结论的合理性作出有说服力的说明●能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数刻画事物间的相互关系
●在探索图形的性质、图形的变換以及平面图形与空间几何体的相互转换等活动过程中,初步建立空间观念发展几何直觉。
●能收集、选择、处理数学信息、并作出合悝的推断或大胆的猜测
●能用实例对一些数学猜想作出检验,从而增加猜想的可信程度或推翻猜想
●体会证明的必要性。发展初步的演绎推理能力
●能在教师指导下,从日常生活中发现并提出简单的数学问题
●了解同一问题可以有不同的解决办法。
●有与同伴合作解决问题的体验
●初步学会表达解决问题的大致过程和结果。 ●能从现实生活中发现并提出简单的数学问题
●能探索出解决问题的有效方法、并试图寻找其他方法。
●能借助计算器解决问题
●在解决问题的活动中,初步学会与他人合作
●能表达解决问题的过程,并嘗试解释所得的结果
●具有回顾与分析解决问题过程的意识。 ●能结合具体情境发现并提出数学问题
●尝试从不同角度寻求解决问题嘚方法并能有效地解决问题,尝试评价不同方法之间的差异
●体会在解决问题的过程中与他人合作的重要性。
●能用文字、字母或图表等清楚地表达解决问题的过程并解释结果的合理性。
●通过对解决问题过程的反思获得解决问题的经验。
●在他人的鼓励与帮助下對身边与数学有关的某些事物有好奇心,能够积极参与生动、直观的数学活动
●在他人的鼓励与帮助下,能克服在数学活动中遇到的某些困难获得成功的体验,有学好数学的信心
●了解可以用数和形来描述某些现象,感受数学与日常生活的密切联系
●经历观察、操莋、归纳等学习数学的过程,感受数学思 考过程的合理性
●在他人的指导下,能够发现数学活动中的错误并及时改正●对周围环境中與数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动
●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难有克服困难和运用知识解决问题的成功体验,对自己得到的结果正确与否有一定的把握相信自己在学习中可以取得不断的进步。
●体驗数学与日常生活密切相关认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流
●通过观察、操作、归納、类比、推断等数学活动,体验数学问题的探索性和挑战 性感受数学思考过程的条理性和数学结论的确定性。
●对不懂的地方或不同嘚观点有提出疑问的意识、并愿意对数学问题进行讨论发现错误能及时改正。●乐于接触社会环境中的数学信息愿意谈论某些数学话題,能够在数学活动中发挥积极作用
●敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验有学好数学的洎信心。
●体验数、符号和图形是有效地描述现实世界的重要手段、认识到数学是解决实际问题和进行交流的重要工具了解数学对促进社会进步和发展人类理性精神的作用。
●认识通过观察、实验、归纳、类比、推断可以获得数学猜想体验数学活动充满着探索性和创造性感受证明的必要性、证明过程的严谨性以及结论的确定性。
●在独立思考的基础上积极参与对数学问题的讨论,敢于发表自己的观点并尊重与理解他人的见解;能从交流中获益。
本部分分别阐述各个学段中“数与代数”“空间与图形”“统计与概率”“实践与综合应鼡”四个领域的内容标准
“数与代数”的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型鈳以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。
“空间与图形”的内容主要涉及现实世界中的物体、几何体囷平面图形的形状、大小、位置关系及其变换它是人们更好地认识和描述生活空间、并进行交流的重要工具。
“统计与概率”主要研究現实生活中的数据和客观世界中的随机现象它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理嘚推断和预测
“实践与综合应用”将帮助综合运用已有的知识和经验,经过自主探索和合作交流解决与生活经验密切联系的、具有一萣挑战性和综合性的问题,以发展他们解决问题的能力加深对“数与代数”“空间与图形”“统计与概率”内容的理解,体会各部分内嫆之间的联系
学段 第一学段(1~3年级) 第二学段(2~6年级) 第三学段(7~9年级)
●探索规律 ●数的认识
空间与图形 ●图形的认识
●图形與位置 ●图形的认识
●图形与位置 ●图形的认识
统计与概率 ●数据统计活动初步
●不确定现象 ●简单数据统计过程
应用 ●实践活动 综合应鼡 ●课题学习
(注:以下仅第三学段内容,要查阅第一、二学段内容可登录/.cn/default.htm)
第三学段(7~9年级)
在本学段中,将学习实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交鋶数量关系以及变化规律的工具发展符号感,体会数学与现实生活的紧密联系增强应用意识,提高运用代数知识与方法解决问题的能仂
在教学中,应注重让在实际背景中理解基本的数量关系和变化规律注重使经历从实际问题中建立数学模型、估计、求解、验证解的囸确性与合理性的过程,应加强方程、不等式、函数等内容的联系介绍有关代数内容的几何背景;应避免繁琐的运算。
(一)具体目标 1.数与式 (1)有理数。
①理解有理数的意义能用数轴上的点表示有理数,会比较有理数的大小
②借助数轴理解相反数和绝对值的意義,会求有理数的相反数与绝对值(绝对值符号内不含字母)
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)
④理解有理数的运算律,并能运用运算律简化运算
⑤能运用有理数的运算解决简单的问题。
③能对含有较大数字的信息作出合理的解释和推断[参见例1]
①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根
②了解开方与塖方互为逆运算,会用平方运算求某些非负数的平方根会用立方运算求某些数的立方根,会用计算器求平方根和立方根
③了解无理数囷实数的概念,知道实数与数轴上的点一一对应
④能用有理数估计一个无理数的大致范围。[参见例2]
⑤了解近似数与有效数字的概念;在解决实际问题中能用计算器进行近似计算,并按问题的要求对结果取近似值
⑤了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化)
①在现实情境中进一步理解用字母表示数的意义。
②能分析简单问题的數量关系并用代数式表示。[参见例3与例4]
③能解释一些简单代数式的实际背景或几何意义[参见例5]
④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式并会代入具体的值进行计算。
①了解整数指数幂的意义和基本性质会用科学记数法表示数(包括在计算器上表示)。
②了解整式的概念会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。
③會推导乘法公式:(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2了解公式的几何背景,并能进行简单计算
④会用提公因式法、公式法(直接用公式不超过二次)进荇因式***(指数是正整数)。
⑤了解分式的概念会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算[參见例6]
①能够根据具体问题中的数量关系,列出方程体会方程是刻画现实世界的一个有效的数学模型。
②经历用观察、画图或计算器等手段估计方程解的过程[参见例7]
③会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)。
④理解配方法会用因式***法、公式法、配方法解简单的数字系数的一元二次方程。
⑤能根据具体问题的实际意义检验結果是否合理。
(2)不等式与不等式组
①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质
②会解简单的┅元一次不等式,并能在数轴上表示出解集会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集
③能够根据具体问题中嘚数量关系,列出一元一次不等式和一元一次不等式组解决简单的问题。
(1)探索具体问题中的数量关系和变化规律[参见例8]
①通過简单实例,了解常量、变量的意义
②能结合实例,了解函数的概念和三种表示方法能举出函数的实例。
③能结合图象对简单实际问題中的函数关系进行分析[参见例9]
④能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值
⑤能用適当的函数表示法刻画某些实际问题中变量之间的关系。[参见例10]
⑥结合对函数关系的分析尝试对变量的变化规律进行初步预测。[ 参見例11]
①结合具体情境体会一次函数的意义根据已知条件确定一次函数表达式。
②会画一次函数的图象根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况=
④能根据一次函数的图象求二元一次方程组的近似解。
⑤能用一次函数解决实际问题
①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式
②能画出反比例函数的图象,根据图象囷解析表达式y=k/x(k≠ 0)探索并理解其性质(k>0或k<0时图象的变化=。
③能用反比例函数解决某些实际问题
①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义
②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质
③会根据公式確定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题
④会利用二次函数的图象求一元二次方程的菦似解。
例1 一次水灾中大约有20万人的生活受到影响,灾情将持续一个月请推断:大约需要组织多少顶帐篷?多少吨粮食
说明假如平均一个家庭有4口人,那么20万人需要5万顶帐篷;假如一个人平均一天需要0.5千克的粮食那么一天需要10万千克的粮食……
例3在某地,人们发現某种蟋蟀叫的次数与温度之间有如下的近似关系:记录蟋蟀每分叫的次数用这个次数除以7,然后再加上3就得到当时的温度。温度(℃)与蟋蟀每分叫的次数之间的关系是:温度=蟋蟀每分叫的次数÷7+3
试用字母表示这一关系。
例4 观察下列图形并填表:
例5 对代数式3a作出解释
说明 如葡萄的价格是3元/千克,买a千克的葡萄需3a元;或 三角形的边长为a这个三角形的周长是3a。
例8 5名同学参加乒乓球赛每两名同學之间赛一场,一共需要多少场比赛?10名同学呢
说明 可以用列举、画图等方法。
例9小明的父母出去散步从家走了20分到一个离家900米的报亭,母亲随即按原速返回父亲看了10分报纸后,用了15分返回家下面的图形中哪一个表示父亲离家的时间与距离之间的关系?哪一个表示母親离家的时间与距离之间的关系
例10 某书定价8元,如果购买10本以上、超过10本的部分打八折试分析并表达出购书数量与付款金额之间的关系。
例11 填表并观察下列两个函数的变化情况:
(1)在同一个直角坐标系中画出上面两个函数的图象比较它们有什么不同;
(2)当x从1开始增大时,预测哪一个函数的值先到达100
在本学段中,将探索基本图形(直线形、圆)的基本性质及其相互关系进一步丰富对空间图形的認识和感受,学习平移、旋转对称的基本性质欣赏并体验变换在现实生活中的广泛应用,学习运用坐标系确定物体位置的方法发展空間观念。
推理与论证的学习从以下几个方面展开:在探索图形性质、与他人合作交流等活动过程中发展合情推理,进一步学习有条理的思考与表达;在积累了一定的活动经验与图形性质的基础上从几个基本的事实出发,证明一些有关三角形、四边形的基本性质从而体會证明的必要性,理解证明的基本过程掌握用综合法证明的格式,初步感受公理化思想
在教学中,应注重所学内容与现实生活的联系注重使经历观察、操作、推理、想像等探索过程;应注重对证明本身的理解,而不追求证明的数量和技巧证明的要求控制在《标准》所规定的范围内。
通过丰富的实例进一步认识点、线、面(如交通图上用点表示城市,屏幕上的画面是由点组成的)
①通过丰富的实唎,进一步认识角
②会比较角的大小,能估计一个角的大小会计算角度的和与差,认识度、分、秒会进行简单换算。
③了解角平分線及其性质([注解]角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角的平分线上)
(3)相交线与平行线。
①了解补角、余角、对顶角知道等角的余角相等、等角的补角相等、对项角相等。
②了解垂线、垂线段等概念了解垂线段最短的性质,体會点到直线距离的意义
③知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点画一条直线的垂线
④了解线段垂矗平分线及其性质[1]。([注解][1]线段垂直平分线上的点到线段两端点的距离相等到线段两端点的距离相等的点在线段的垂直平分线上。)
⑤知道两直线平行同位角相等进一步探索平行线的性质。
⑥知道过直线外一点有且仅有一条直线平行于已知直线会用角尺和直尺过已知矗线外一点画这条直线的平行线。
⑦体会两条平行线之间距离的意义会度量两条平行线之间的距离。
①了解三角形有关概念(内角、外角、中线、高、角平分线)会画出任意三角形的角平分线、中线和高,了解三角形的稳定性
②探索并掌握三角形中位线的性质。
③了解全等三角形的概念探索并掌握两个三角形全等的条件。
④了解等腰三角形的有关概念探索并掌握等腰三角形的性质[2]和一个三角形是等腰三角形的条件[3];了解等边三角形的概念并探索其性质。([注解][2] 等腰三角形的两底用相等底边上的高、中线及项角平分线三线合一。[3] 囿两个用相等的三角形是等腰三角形)
⑤了解直角三角形的概念,探索并掌握直角三角形的性质[4]和一个三角形是直角三角形的条件[5]([紸解][4]直角三角形的两锐角互余,斜边上的中线等于斜边一半[5]有两个角互余的三角形是直角三角形。)
⑥体验勾股定理的探索过程会运鼡句股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。
①探索并了解多边形的内角和与外角和公式了解正多边形的概念。
②掌握平行四边形、短形、菱形、正方形、梯形的概念和性质了解它们之间的关系;了解四边形的不稳定性。
③探索并掌握平行四边形嘚有关性质[1]和四边形是平行四边形的条件[2]([注解] [1]平行四边形的对边相等、对角相等、对角线互相平分。[2]一组对边平行且相等或两组对邊分别相等,或对角线互相平分的四边形是平行四边形)
④探索并掌握矩形、菱形、正方形的有关性质[3]和四边形是矩形、菱形、正方形嘚条件[4]。([注解] [3]矩形的四个角都是直角对角线相等;菱形的四条边相等,对角线互相垂直平分 [4]三个角是直角的四边形,或对角线相等嘚平行四边形是矩形;四边相等的四边形或对角线互相垂直的平行四边形是菱形)
⑤探索并了解等腰梯形的有关性质[5]和四边形是等腰梯形的条件[6]。([注解] [5]等腰梯形同一底上的两底角相等两条对角线相等。[6] 同一底上的两底角相等的梯形是等腰梯形)
⑥探索并了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的短形木板的重心)。
⑦通过探索平面图形的镶嵌知道任意┅个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计
①理解圆及其有关概念,了解弧、弦、圆心角嘚关系探索并了解点与圆、直线与圆以及圆与圆的位置关系。
②探索圆的性质了解圆周角与圆心角的关系、直径所对圆周角的特征。
③了解三角形的内心和外心
④了解切线的概念,探索切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线会过圆上一点畫圆的切线。
⑤会计算弧长及扇形的面积会计算圆锥的侧面积和全面积。
①完成以下基本作图:作一条线段等于已知线段作一个角等於已知角,作角的平分线作线段的垂直平分线。
②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角忣其夹边作三角形;已知底边及底边上的高作等腰三角形
③探索如何过一点、两点和不在同一直线上的三点作圆。
④了解尺规作图的步驟对于尺规作图题,会写已知、求作和作法(不要求证明)
①会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视圖、俯视图),会判断简单物体的三视图能根据三视图描述基本几何体或实物原型。
②了解直棱柱、圆锥的侧面展开图能根据展开图判断和制作立体模型。
③了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例知道这种关系在现实生活中的应用(如物体的包装)。
④观察与现实生活有关的图片(如照片、简单的模型图、平面图、地图等)了解并欣赏一些有趣的图形(如雪花曲線、莫比乌斯带)。
⑤通过背景丰富的实例知道物体的阴影是怎么形成的,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下觀察手的阴影或人的身影)。
⑥了解视点、视角及盲区的涵义并能在简单的平面图和立体图中表示。
⑦通过实例了解中心投影和平行投影
①通过具体实例认识轴对称,探索它的基本性质理解对应点所连的线段被对称轴垂直平分的性质。
②能够按要求作出简单平面图形經过一次或两次轴对称后的图形;探索简单图形之间的轴对称关系并能指出对称轴。[参见例1]
③探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质
④欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体嘚镜面对称能利用轴对称进行图案设计。
①通过具体实例认识平移探索它的基本性质,理解对应点连线平行且相等的性质
②能按要求作出简单平面图形平移后的图形。
③利用平移进行图案设计认识和欣赏平移在现实生活中的应用。
①通过具体实例认识旋转探索它嘚基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质
②了解平行四边形、圆是中心对称图形。
③能够按要求作出简单平面图形旋转后的图形
④欣赏旋转在现实生活中的应用。
⑤探索图形之间的变换关系(轴对称、平移、旋转忣其组合)[参见例2和例3]
⑤灵活运用轴对称、平移和旋转的组合进行图案设计。
①了解比例的基本性质了解线段的比、成比例线段,通過建筑、艺术上的实例了解黄金分割
②通过具体实例认识图形的相似,探索相似图形的性质知道相似多边形的对应角相等,对应边成仳例面积的比等于对应边比的平方。
③了解两个三角形相似的概念探索两个三角形相似的条件。
④了解图形的位似能够利用位似将┅个图形放大或缩小。
⑤通过典型实例观察和认识现实生活中物体的相似利用图形的相似解决一些实际问题(如利用相似测量旗杆的高喥)。
⑥通过实例认识锐角三角函数(sinAcosA,tanA),知道30°,45°,60°角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角。
⑦运用三角函数解决与直角三角形有关的简单实际问题
(1)认识并能画出平面直角坐标系;在给定的直角坐标系Φ,会根据坐标描出点的位置、由点的位置写出它的坐标[参见例4]
(2)能在方格纸上建立适当的直角坐标系,描述物体的位置「参见唎5」
(3)在同一直角坐标系中感受图形变换后点的坐标的变化[[参见例6]
(4)灵活运用不同的方式确定物体的位置。[参见例7]
(1)了解证奣的含义
②通过具体的例子,了解定义、命题、定理的含义会区分命题的条件(题设)和结论。
③结合具体例子了解逆命题的概念,会识别两个互逆命题并知道原命题成立其逆命题不一定成立。
④通过具体的例子理解反例的作用知道利用反例可以证明一个命题是錯误的。
⑤通过实例体会反证法的含义。
⑥掌握用综合法证明的格式体会证明的过程要步步有据。
(2)掌握以下基本事实作为证明嘚依据。
①一条直线截两条平行直线所得的同位角相等
②两条直线被第三条直线所截,若同位角相等那么这两条直线平行。
③若两个彡角形的两边及其夹角(或两角及其夹边或三边)分别相等,则这两个三角形全等
④全等三角形的对应边、对应角分别相等。
(3)利鼡(2)中的基本事实证明下列命题[1]([注解][1]练习和考试中与证明有关的题目难度应与所列命题的论证难度相当。)
①平行线的性質定理(内错角相等、同旁内角互补)和判定定理内错角相等或同旁内角互补则两直线平行]。
②三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和三角形的外角大于任何一个和它不相邻的内角)。
③直角三角形全等的判定定理
④角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心)。
⑤垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交于一点(外心)
⑦等腰三角形、等边三角形、直角三角形的性质和判定定理。
⑧平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理
(4)通过對欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值
(二)案例 例1 以树干为对称轴,画出树的另一半
例1圖 例2图 例3图
例2 请说出下面乙树是怎样由甲树变换得到的?
例3 观察下面的图案它可以看成是由哪个图形经过怎样的变换产生的?
唎4 在坐标系中描出下列各点并将各组的点顺次连接起来:
①(2,0)(4,0)(6,2)(6,6)(5,8)(4,6)
(2,6)(1,8)(0,6)(0,2)(2,0);
②(13),(22),(42),(53);
③(1,4)(2,4)(2,5)(1,5)(1,4);
④(44),(54),(55),(45),(44);
观察这个图形,你觉得它像什么
例5 下图是某市旅游景点的示意图。试建立直角坐标系用坐标表示各个景点的位置:
例6如图所示,在直角坐标系下图1中的图案“A”经过变换分别变成图2~图6中的相应图案(虚线对应于原图案),试写出图2~图6中各項点的坐标探索每次变换前后图案发生了什么变化、对应点的坐标之间有什么关系。
例7 张坚在某市动物园的大门口看到这个动物园的平媔示意图(如下图)试借助刻度尺、量角器解决如下问题:
(1)建立适当的直角坐标系,用坐标表示猴山、驼峰、百鸟园的位置;
(2)填空:百鸟园在大门的北偏东 度的方向上到大门的图上距离约为 厘米;
熊猫馆在大门的北偏 度的方向上,到大门的图上距离约为 厘米;驼峰在大门的南偏 度的方向上到大门的图上距离约为厘米。说明本题旨在让体会除用直角坐标系描述物体的位置外还可以选定某个參照物和某个方向,用距离和角度来刻画物体的位置
在本学段中,将体会抽样的必要性以及用样本估计总体的思想进一步学习描述数據的方法,进一步体会概率的意义能计算简单事件发生的概率。
在教学中应注重所学内容与日常生活、自然、社会和科学技术领域的聯系,使体会统计与概率对制定决策的重要作用;应注重使从事数据处理的全过程根据统计结果作出合理的判断;应注重使在具体情境Φ体会概率的意义;应加强统计与概率之间的联系;应避免将这部分内容的学习变成数字运算的练习,对有关术语不要求进行严格表述
(1)从事收集、整理、描述和分析数据的活动,能用计算器处理复杂的统计数据
(2)通过丰富的实例,感受抽样的必要性能指出总体、个体、 样本,体会不同的抽样可能得到不同的结果[参见例1]
(3)会用扇形统计图表示数据。
(4)在具体情境中理解并会计算加权平均数;根据具体问题能选择合适的统计量表示数据的集中程度。
(5)探索如何表示一组数据的离散程度会计算极差和方差,并会用它們表示数据的离散程度[参见例2]
(6)通过实例,理解频数、频率的概念了解频数分布的意义和作用,会列频数分布表画频数分布矗方图和频数折线图,并能解决简单的实际问题
(7)通过实例,体会用样本估计总体的思想能用样本的平均数、方差来估计总体的平均数和方差。
(8)根据统计结果作出合理的判断和预测体会统计对决策的作用,能比较清晰地表达自己的观点并进行交流。
(9)能根據问题查找有关资料获得数据信息;对日常生活中的某些数据发表自己的看法。
(10)认识到统计在社会生活及科学领域中的应用并能解决一些简单的实际问题。[参见例3]
(1)在具体情境中了解概率的意义运用列举法(包括列表、画树状图)计算简单事件发生的概率。[参见例4和例5]
(2)通过实验获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值。[参见例6]
(3)通过实唎进一步丰富对概率的认识并能解决一些实际问题。[参见例7]
例1 电视台需要在本市调查某节目的收视率每个看电视的人,都要被問到吗对一所大学的调查结果能否作为该节目的收视率?你认为对不同社区、年龄层次、文化背景的人所做的调查结果会一样吗
例2 丅面是两个水果店1至6月份的销售情况(单位:千克),比较两个水果店销售量的稳定性
例3 统计某商店一个月内几种商品的销售情况,对這个商店的进货提出你的建议
例4 一个袋中装有2个黄球和2个红球,任意摸出一个球后放回再任意摸出一个球,求两次都摸到红球的概率
例5 如图转动转盘,求转盘停止转动时指针指向阴影部分的概率
例6 通过实验获得图钉从一定高度落下后针尖着地的频率。
例7 一个游戏的Φ奖率是1%买100张奖券,一定会中奖吗
在本学段中,将探讨一些具有挑战性的研究课题发展应用数学知识解决问题的意识和能力;同時,进一步加深对相关数学知识的理解认识数学知识之间的联系。
在前两个学段的基础上教学时应引导结合生活经验提出课题、积极哋思考所面临的课题、清楚地表达自己的观点并能够解决一些问题。
1.经历“问题情境—建立模型—求解—解释与应用”的基本过程
2.體验数学知识之间的内在联系,初步形成对数学整体性的认识
3.获得一些研究问题的方法和经验,发展思维能力加深理解相关的数学知识。
4.通过获得成功的体验和克服困难的经历增进应用数学的自信心。
例 用一张正方形的纸制作一个无盖的长方体怎样制作使得体積较大?
说明这是一个综合性的问题可能会从以下几个方面进行思考:(1)无盖长方体展开后是什么样?(2)用一张正方形的纸怎样才能制作一個无盖长方体基本的操作步骤是什么?(3)制成的无盖长方体的体积应当怎样去表达(4)什么情况下无盖长方体的体积会较大?(5)如果是用一张囸方形的纸制作一个有盖的长方体怎样去制作?制作过程中的主要困难可能是什么
通过这个主题的学习,进一步丰富自己的空间观念体会函数思想以及符号表示在实际问题中的应用,进而体验从实际问题抽象出数学问题、建立数学模型、综合应用已有的知识解决问题嘚过程并从中加深对相关知识的理解、发展自己的思维能力。
数学解方程100道难一点的: 丰沙铁路:丰沙线改建工程顺利开通国内各大媒體争相报道,缺失:数学解方程100道难一点的
我们找到第103篇与丰沙铁路:丰沙线改建工程顺利开通国内各大媒体争相报道有关的信息,分別包括:
以下是的一些我们精选的丰沙铁路:丰沙线改建工程顺利开通国内各大媒体争相报道
12月21日10时38分,历经6个小时的奋力攻坚由Φ铁六局北京铁建公司承建的丰沙线改建工程要点一级拨接施工顺利完成,历时两年三个月建设的丰沙铁路改建工程顺利开通运营至此,运行62年的丰沙铁路近7KM线路改由地下运行为长安街西延道路工程如期竣工通车奠定了坚实基础。
第一趟列车驶过新建丰沙线
中央电視台、新华社、中新社、北京电视台、北京日报、北京晨报、首都建设报等近20家媒体齐聚丰沙改建线施工现场对工程建设情况进行采访報道。
丰沙铁路改建工程是北京市和铁路总公司的重点建设项目是为满足长安街西延需要以及首钢地区总体规划要求,对丰沙铁路進行局部入地改造的既有铁路改造工程
工程由原紧贴永定河大堤位置的丰沙铁路东移50米,改从首钢老厂院内通过以隧道方式下穿艏钢西侧厂区、石景山和京能热电厂南侧厂区。工程全长6985米地下隧道占4350米,其中明挖段3871米暗挖穿越石景山段479 米。
这次改线入地是国铁隧道首次穿越石景山。隧道上方有石景山区重点文物功碑阁、天主宫院且工程紧邻既有丰沙铁路,距離首钢人防通道最近距离仅为2.044米
自2016年4月开工以来,丰沙改建项目部员工克服了工期紧、隧道浅埋偏压、施工风险点多、围岩软弱、施工难度大等诸多不利因素综合应用了微振动控制爆破技术、爆破振动监测技术、邻近被保护构筑物减震开挖工法等新技术、新工法。
石景山暗挖隧道工程于2017年5月31日实现顺利贯通施工期间,未对周边风险点造成不利影响圆满完成了施工任务。
丰沙线改建工程包括蕗基U型槽1970米路堑490米,明挖隧道3871米以及13200米的无砟轨道铺设U型槽段采用旋喷桩加固地基,累计桩长5131米重型碾压4916平方米。
明挖法施工汾331个施工单元61个后浇带,基坑开挖需与支护结构同步实施主体结构需分层浇筑分部拆除,工序复杂安全等级高。
既有线改造包括对原养三站进行拆除丰沙改建线路大小里程侧需同时要点拨接至既有丰沙线,拨线长度分别长达193米和191.6米
工程临近营业线施工,明挖深基坑与既有丰沙铁路线并行邻近首钢厂区内的散热塔、距历史文物北惠济庙仅3米、沿线的各种地下管線情况异常复杂,安全风险极高
为确保施工人员、施工设备的安全,确保既有线正常运营项目部科学组织、优化方案,加强监测重点盯控,派专人24小时加强既有线及构筑物的施工防护保证了基坑稳定和周边建筑物的安全。
施工过程中各级领导多次到现场盯控,协调指导项目部不断加强施工组织,优化方案强化现场管控,确保了每项施工步骤忙而不乱紧张有序。
丰沙铁路改建工程的顺利开通扫除了长安街西延道路工程施工的一个最大障碍,提升了首钢地区和永定河区域的综合形象对带动门头沟、石景山区发展以及疏解中心城区部分功能,也具有积极的意义
最新丰沙铁路:丰沙线改建工程顺利开通,国内各大媒体争相报道可以看看这篇名叫哪些火车站开通了脸进站通道 中国铁路率先脸进站的文章可能你会获得更多丰沙铁路:丰沙线改建工程顺利开通,国内各大媒体争相报噵
我们找到第1篇与哪些火车站开通了脸进站通道 中国铁路率先脸进站有关的信息分别包括:
以下是的一些我们精选的哪些火车站开通了脸進站通道 中国铁路率先脸进站
中国的科技越来越发达,目前中国铁路率先脸进站这比能脸开锁的iPhone X,领先了近一年方便快捷,而且更加咹全那么哪些火车站开通了脸进站通道?
在高铁上在不同地区都在进行脸系统进站。
这比能脸开锁的iPhone X领先了近一年。此举不但方便赽捷而且更加安全。乘客化了妆戴了美瞳系统也是能够识别出来!
哪些火车站开通了脸进站通道
北京、广州、上海、成都、武汉等地的吙车站开通了自助“脸”进站通道,这比能脸开锁的iPhone X领先了近一年。此举不但方便快捷而且更加安全。乘客化了妆戴了美瞳系统也昰能够识别出来!
1.为了保证旅客快速“脸”进站,有火车站工作人员提醒旅客和车票的放置方式一定要正确,车票上的二维码要朝前同時,口罩、帽子、眼镜等遮挡物要摘掉
2.“目前‘脸’失败的情况还比较少。”北京西站客运车间相关负责人说但一些人的二代使用时間长,旅客外貌发生较大变化这样会识别不出来。
3.“人脸识别验证仪器将扫描到的人脸和照片进行比对,主要是看脸部轮廓、眉骨、嘴唇两边和胖瘦没有关系,如果‘脸’进站时比对相似度不到75%就需要人工验证”
4.脸进站不是所有旅客都能用,持有红色车票的不能使鼡;持有票、残疾人票等减价车票的需要人工核验减价的证件只能走人工通道。
数学解方程100道难一点的: 和顺堂精品中生产基地二期工程奠基缺失:数学解方程100道难一点的