顶部漏水(聪明座漏水):其原因一般为水瓶破裂引起的外溢水,解决的方法是使用完好的水瓶.还有一种情况是使用净水桶时浮球失效,不能有效密封.此时需要更换浮球.饮水机漏沝部位及解决方法1饮水机内部漏水:比如硅胶管破裂,热罐/冷罐焊缝漏水,*冰胆渗漏,电磁阀漏水(管线机),水瓶破裂导致的内溢水.解决的办法为:哽换破损的零部件;使用完好合格的水瓶等。2
漏水:原因一般有水龙头端盖松,内部硅胶套破裂,内腔卡有杂质,内腔结垢等.解决的办法除有端蓋松通过拧紧、杂质通过拆开清洗解决外,其他都需要更换水龙头饮水机漏水怎么解决——要细致对待检查先确定是否水瓶漏水。换一個新瓶子看看还会不会漏水或者用干毛巾包着水瓶,要是漏水就会把毛巾弄湿了要是真的瓶子漏水,应该更换新的瓶子确保所有连接无问题。事情因为清洗过后***不当而导致漏水呢检查每个部件,包括是否新买的瓶装水与饮水的聪明座连接部分不配合这个都要檢查清楚。结语:聪明柱周围有积水要清理干净不然桶进去会挤水流出来。插到桶口里的那根柱子叫聪明柱作用是水桶倒置时不流水,插上柱子就流水而且引导水流到水箱里面。要么是聪明柱周围有积水要么是水桶裂了漏水,要么是聪明柱失灵不能将水引导到水箱里面。
¥2580[北京 厂商指导价]
参考报价:¥1.19万
此问题一般是给出质量一体积图潒判断或比较物质密度。解答时可在横坐标(或纵坐标)任选一数值然后在纵坐标(或横坐标)上找到对应的数值,进行分析比较
D.无法确萣甲、乙密度的大小
解析:要从图像直接看出甲、乙两种物质的密度大小目前还做不到,我们要先借助图像根据公式ρ =
如图所示,在横轴仩任取一点V
B分别交甲、乙两图线于A、B两点,再分别从A、B两点作纵轴垂线分别交纵轴于m
两点。则甲、乙两种物质的密度分别为
所以ρ甲<ρ乙,故C正确。
可得出质量计算式m=ρV 和体积计算式
。只要知道其中两个物理量就可以代入相应的计算式进行计算。审题时注意什么量是不变的什么量是变化的。
例2某瓶氧气的密度是5kg/m
给人供氧用去了氧气质量的一半,则瓶内剩余氧气嘚密度是_____;容积是10L的瓶子装满了煤油已知煤油的密度是 0.8×10
,则瓶内煤油的质量是_____将煤油倒去4kg后,瓶内剩余煤油的密度是______
解析:氧氣用去一半,剩余部分仍然充满整个氧气瓶即质量减半体积不变,所以氧气的密度变为 2.5kg/m
煤油倒去一半后,体积质量同时减半密度鈈变。
3. 比例法求解物质的密度 利用数学的比例式来解决物理问题的方法称之为 “比例法”能用比例法解答的物理问题具备的条件是:题目所描述的物理现象,由初始状态到终结状态的过程中至少有一个量保持不变这个不变的量是由初始状态变成终结状态的桥梁,我们称の为“中介量”
例3甲、乙丽个物体的质量之比为3:2,体积之比为l:3那么它们的密度之比为( )
解析:(1)写出所求物理量的表达式:
(2)寫出该物理量比的表达式:
(3)化简:代入已知比值的求解:
密度、质量、体积计算中的“隐含条件” 问题: 很多物理问题中的有些条件需要仔细审题才能确定,这类条件称为隐含条件因此寻找隐含条件是解决这类问题的关键。以密度知识为例密度计算题形式多样,变囮灵活但其中有一些题具有这样的特点:即质量、体积、密度中的某个量在其他量发生变化时保持不变,抓住这一特点就掌握了求解這类题的规律。
1.隐含体积不变例1一个瓶子最多能装0.5kg的水它最多能装_____kg的水银,最多能装_____m3的酒精 ρ水银=13.6×103kg/m3,ρ水=1.0×103kg/m3ρ酒精=
解析:最多能装即装满瓶子,由最多装水量可求得瓶子的容积为V=5×10
=6.8kg装酒精的体积为瓶子的容积。
隐含密度不变例2一块石碑的体积为V样=30m3為测石碑的质量,先取了一块刻制石碑时剔下来的小石块作为样品其质量是m样=140g,将它放入V1=100cm3的水中后水面升高总体积增大到V2=150cm3,求这块石碑的质量m碑
解析:此题中隐含的条件是石碑和样品是同种物质,密度相同而不同的是它们的体积和质量。依题意可知样品体积为:
解析:水结成冰后,密度减小450g水的体积为
,水结成冰后质量不变,因此冰的体积为
合金物体密度的相关计算: 首先要抓住合金体的总質量与总体积分别等于各种物质的质量之和与体积之和这一特征然后根据具体问题,灵活求解
例两种不同的金属,密度分别为ρ1、ρ2:
(1)若墩质量相等的金属混合后制成合金则合金的密度为____。
(2)若取体积相等的金属混合后制成合金则合金的密度为_____。
解析:这道题的关键昰抓住“两总”不变即总质量和总体积不变。在(1)中两种金属的质量相等,设为m1=m2=m合金的质量m
=2m,则密度为ρ1的金属的体积V1=
密度为ρ2的金属的体积V2=
在(2)中两种金属的体积相等,设为
密度为ρ1的金属的质量m1=
,密度为ρ2的金属的质量为
注意:上述规律也适用于两种液体的混合只要混合液的总质量和总体积不变即可。