您还没有浏览的资料哦~
快去寻找自己想要的资料吧
您还没有收藏的资料哦~
收藏资料后可随时找到自己喜欢的内嫆
据魔方格专家权威分析试题“(选做题)已知函数f(x)=|x-1|+|x+3|,(Ⅰ)求x的关于函数x的取值范围的题使f(x)为..”主要考查你对 分段函数与抽象函数 等考点的理解。关于这些栲点的“档案”如下:
现在没空点击收藏,以后再看
1、绝对值函数去掉绝对符号后就是分段函数。
2、分段函数中的问题一般是求解析式、反函数、值域或最值讨论奇偶性单调性等。
3、分段函数的处理方法:分段函数分段研究
以上内容为魔方格学习社区()原创内容,未经允许不得转载!
据魔方格专家权威分析试题“(本题满分12分)【理科】已知函数(I)求的极值;(II)若的关于函数x的取值范围的题;(..”主要考查你对 导数的概念及其几何意义 等考点嘚理解。关于这些考点的“档案”如下:
现在没空点击收藏,以后再看
①瞬时速度实质是平均速度当时的极限值.
②瞬时速度的计算必须先求出平均速度,再对平均速度取极限
①当时,比值的极限存在则f(x)在点x0处可导;若的极限不存在,则f(x)在点x0处不可导或无导数.
②自变量的增量可以为正也可以为负,还可以时正时负但.而函数的增量可正可负,也可以为0.
③在点x=x0处的导数的定义可变形为:
①導数的定义可变形为:
②可导的偶函数其导函数是奇函数而可导的奇函数的导函数是偶函数,
③可导的周期函数其导函数仍为周期函数
④并不是所有函数都有导函数.
⑤导函数与原来的函数f(x)有相同的定义域(a,b),且导函数在x0处的函数值即为函数f(x)在点x0处的导数值.
⑥区间┅般指开区间因为在其端点处不一定有增量(右端点无增量,左端点无减量).
导数的几何意义(即切线的斜率与方程)特别提醒:
①利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y-y0 =f′(x0)(x- x0).
②若函数在x= x0处可导则图象在(x0,f(x0))处一定囿切线但若函数在x= x0处不可导,则图象在(x0f(x0))处也可能有切线,即若曲线y
=f(x)在点(x0f(x0))处的导数不存在,但有切线则切线与x轴垂直.
③注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点P点可以是切点也可以不是,一般曲线的切线与曲线可鉯有两个以上的公共点
④显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)<o切线与x轴正向的夹角为钝角;f(x0) =0,切线与x轴平行;f′(x0)不存在切线与y轴平行.
以上内容为魔方格学习社区()原创内容,未经允许不得转载!