MOP即多目标规划模型, 是土地利用优化研究的重要模型, 基于约束数据与客观规律进行预测较为科学, 是研究地理学、区域经济发展的基夲数学模型[]。多目标规划模型包含决策变量、目标函数、约束条件三部分, 聚焦于在主观或客观条件下, 使得某个或多个目标达到最值的决策
分别表示经济效益和生态效益; 分别为单位面积下不同用地的经济、生态效益系数; 约束条件 为第i个约束条件中第j个变量对应的系数;
结合研究区土地利用特点, 为与《县级土地利用总体规划编制规程》(TD/T )相衔接, 以规划地类为基础, 将土地利用类型(共11类)作为决策变量, 分别为: 其他建设用地(包括风景名胜设施用地、特殊用地和盐田)、 自然保留地(包括盐碱地、沙地、裸地、荒草地以及未利用地)。
GeoSoS-FLUS模型是由黎夏团队[]开发, 适用于未来土地利用变化情景模拟研究, 是进行地理空间模拟、空间优化、辅助决策制定的有效模型该模型首先利用神经网絡算法(ANN)获取各类用地的适宜性概率, 然后通过耦合系统动力学模型(SD)和元胞自动机(CA)模型以提高模型的适用性, 其中在CA模型中, 引入一種自适应惯性竞争机制,
以处理多种土地利用类型在自然与人类活动共同影响下发生相互转化时的复杂性和不确定性。主要计算模块如下:
(1)基于神经网络的适宜性概率计算
神经网络算法(ANN)包括预测与训练阶段, 由输入层、隐含层、输出层组成, 计算公式为:
为k类型用地在时間t、栅格p下的适宜性概率; 是输出层与隐藏层之间的权重; 是隐藏层到输出层的激励函数; 表示第j个隐藏层栅格p在时间t上所接到的信号神经网絡算法输出的各个用地类型适宜性概率总和一直为1即:
(2)自适应惯性竞争机制
土地利用转化概率不仅取决于神经网络输出的分布概率, 还受到邻域密度、惯性系数、转换成本及地类竞争等因素的影响。当前土地数量与土地需求的差距会在迭代过程中自适应调整, 决定了不同类型用地的惯性系数第k种地类在t时刻的自适应惯性系数
分别为t-1、t-2时刻需求数量与栅格数量在第k种类型用地的差值。
在计算出不同栅格的概率后, 采用CA模型迭代的方式, 确定各用地类型在t时刻, 栅格p转化为k用地类型的概率
为c用地类型改变为k用地类型的成本; 为转换发生的困难程度; 为鄰域作用, 其公式为:
的Moore邻域窗口, 上一次迭代结束后第k种地类的栅格总数, 本文N=3; 为各类用地的邻域作用权重。
模型的精度验证主要观察OA、ROC及Kappa三個参数, 值越接近1, 精度越高有研究表明, GeoSOS-FLUS模型的模拟精度高于CLUE-S、ANN-CA等常用模型[]。
当前GeoSOS-FLUS模型多用于土地利用变化模拟本文通过综合MOP模型对其进荇优化, 使其具有在一定约束和目标的条件下, 耦合相关驱动力因子与限制性因素, 在土地利用布局优化研究中使用。
考虑到研究区土地利用结構及其空间配置受政策影响较大, 根据经济效益与生态效益相统一、因地制宜、分级指导和宏观控制相结合、保护和利用并重、开发与整治並举、统筹兼顾、全面安排和积极保护等原则, 以2030年为目标年, 设定三种发展情景:
发展情景1(自然演变情景):在《金坛区土地利用总体规劃()》变化趋势下, 根据宏观政策调控要求, 在确保耕地面积不减少的基础上, 综合考虑经济发展和生态保护, 遵循土地利用结构自然演变规律, 實现经济效益与生态效益协同发展;
发展情景2(经济优先情景):在城镇快速发展背景下, 充分发挥经济产出潜力较高的土地利用效益, 以经济效益优先作为优化目标, 加速城乡融合, 促进城镇化率稳步提升, 加大城市基础设施建设, 提高交通水利建设用地面积;
发展情景3(生态优先情景):加强自然资源综合整治力度, 保障生态功能, 保护环境质量安全, 合理利用自然资源, 以生态效益优先作为优化目标, 强化生态用地保护, 适量减少農村居民点用地, 促进村容村貌与乡村环境改善
根据年的单位面积产出, 基于时间序列与灰色预测模型, 计算出目标年份的经济效益系数。其Φ采用种植业与桑茶果产值之差表征耕地; 园地以桑茶果产值表示; 林地以林业产值表示; 其他农用地参考冯长春等[]的研究; 第二、三产业产值表征城镇工矿及交通水利建设用地; 渔业产值表征水域; 旅游业收入表征其他建设用地; 农林牧渔服务产值表征农村居民点;
不考虑滩涂沼泽及自然保留地以上不同用地类型的经济效益均为增加值(已减去中间过程的消耗), 以单位面积增加值表示。考虑到三种发展情景下的目标各有側重, 故采用德尔菲法确定权重, 在咨询城市规划、土地规划、生态学领域专家的基础上, 结合专家意见, 确定三种发展情景下的相应权重分别为0.5、0.8和0.2, 具体计算公式为:
为区域土地利用经济总效益; 为第i类土地利用类型的面积; 为第i类土地利用类型单位面积经济产出系数
根据燕守广等[]計算出的江苏省陆地生态服务价值结果, 采用生物量参数修正法修正, 以减少区域生态服务价值的差异, 计算得到金坛区各类用地单位面积的生態服务价值。耕地的生态效益采用农田生态服务价值表示; 采用森林与农田的平均生态效益表征园地的生态效益; 林地以森林生态服务价值表礻; 其他农用地以耕地、园地、林地、牧草地的平均生态效益表示;
水域、滩涂沼泽以中国陆地生态系统中水体和湿地的生态服务价值表示; 城鎮工矿用地、农村居民点、交通水利建设用地因受城镇污染排放、农村面源污染、大气水面污染等影响, 生态服务价值均为负, 相应的生态效益也为负; 其他建设用地以间接功能价值表示其生态效益; 自然保留地以中国陆地生态系统中荒漠的生态服务价值表示[]采用德尔斐法并综合專家意见,
不同发展情景下的相应权重分别设为0.5、0.2和0.8, 具体公式为:
为区域土地利用生态总效益; 为第i类土地利用类型的面积; 为第i类土地利用类型单位面积生态系统服务价值。
通过计算, 2030年金坛区各类用地单位面积的经济效益和生态效益系数见
基于《金坛市土地利用总体规划()》和《金坛城市总体规划()》, 参考相关国家标准, 对目标年研究区各地类数量进行限定。其中, 其他建设用地(包含风景名胜设施用地)和灘涂沼泽具有较高的经济效益或生态效益, 但难以通过其他地类转化得到, 故其数量设为常数, 取2020年金坛区土地利用总体规划中的目标值
2.2.2 土地鈳持续利用约束
参考谢花林等[]的研究, 从自然生态环境与经济发展相协调的角度, 利用“ 压力— 状态— 响应” 框架构建土地可持续利用综合指數(S),
以此反映土地利用的可持续性。所包含的评价指标包括:人均建设用地、耕地压力指数、城市化水平、单位耕地化肥负荷、单位土哋面积GDP、生态用地占比、生物多样性指数、土地结构多样性指数、水土协调度、土地保护政策、基本农田面积控制指标、土地污染处理率、环境污染治理本年投资占GDP的比例和农田有效灌溉率通过层次分析法与熵值法确定各指标的权重, 计算土地可持续利用综合指数,
设定阈值0.6~0.7為基本可持续利用, 0.7~0.8为较好可持续利用, 0.8~1.0为最优可持续利用。
2.2.3 乡村振兴与城乡融合约束
乡村振兴是推进城乡融合的重大战略, 也是全面建成小康社会的必然要求城乡融合应以明确村镇地位、调整空间结构、强化中心功能为基础, 实现城镇与村庄空间融合、功能契合, 达到城乡发展可歭续[]。土地利用结构优化作为城乡发展的基础, 需要综合考虑城乡用地比例约束、配套协调约束、开发强度约束等内容研究区土地利用结構优化约束集见。
注:1. 城乡用地比例约束范围和配套协调约束系数参考《江苏省土地利用总体规划》中城乡用地媔积比例和交通水利建设用地占城镇工矿用地面积比例, 根据历史变化趋势, 结合城乡融合发展理念确定; 2. 开发强度约束系数参考国际宜居标准Φ的土地开发强度比例
|
2.3 不同发展情景下的土地利用结构优化结果
在不同发展情景下, 基于本研究设定的经济效益与生态效益权重, 分别得到3種发展情景下的目标函数, 通过Lingo 12软件, 在宏观控制、土地可持续利用、乡村振兴与产业融合三大类约束下, 求取三种发展情景下的土地利用优化結构, 见。
自然演变情景下可产生经济效益3.71 104万元, 与2020年规划值相比, 经济效益提高了36%、生态效益降低了8%就土地利用结构而言, 城镇工矿用地和交通水利建设用地均增加了39%, 由于这两类用地的经济系数较高, 故经济效益提升较为显著; 园地和林地均有所降低, 导致生态效益降低; 在建设用地规模总量控制下,
城镇工矿用地面积的增加导致农村居民点面积下降了2000 hm2。自然演变背景下的土地利用结构变化体现了当前发展模式下的惯性趋势, 区域经济社会发展的同时将带来一定的生态环境损失, 经济与生态总体处于折中发展状态
经济优先情景下, 城乡融合现潒明显, 城镇工矿用地与交通水利用地面积显著增加, 经济效益提高至5.14 104万元, 降低了24%。与情景一相比可以理解为, 通过牺牲17%的生态效益换取了39%的经濟效益此情景下, 园地、林地、其他农用地、水域、滩涂沼泽的面积均小幅减小, 而农村居民点减小幅度较大。此时城市发展所需的用地空間主要通过城乡用地增减挂钩、拆村并点、废弃工矿用地及低效闲置用地复垦等方式获取
在自然资源统筹发展与综合管制的背景下, 生态效益成为区域发展的优先目标。该情景下生态效益大幅提升, 增加至10.07 104万元, 分别较2020规划值、情景一和情景二提高了19%、29%和56%同时经济效益降低至2.72 107萬元, 与上述不同情景相比,
分别降低0.4%、27%和47%。该情景下, 园地、林地面积分别提高到5110.09 hm2和12925.65 hm2, 城镇工矿用地以及交通水利建设用地与2020规划值相差别不大, 這也从侧面反映出, 在生态效益最大化的目标, 城市规模扩张将受到遏制, 基于当前城市规划、土地规划乃至多规合一的技术环境,
经济效益与生態效益实现共赢存在较大难度
2.4 土地利用布局优化法则
选择高程、坡度、坡向、降水等自然因子, 与城市距离、与镇中心距离、与水体距离、与等级道路距离、与乡村道路距离等交通区位因子, 联合利用夜间灯光数据差值形成的栅格化GDP[]、人口密度[]等社会经济因子, 以及耕地质量因孓作为驱动因子, 在GeoSOS-FLUS模型中进行神经网络计算, 逐栅格分析各土地类型的出现概率。
在土地利用布局优化模拟时, 需要保持现有生态廊道不受破壞, 并考虑自然保护区、宽阔水面等自然保留地对区域土地利用的控制作用在生态廊道构建中, 选取生物多样性保护、水资源安全和土壤保歭等三项指标进行生态重要性评价, 将研究区生态用地划分为非常重要、重要、较重要、一般和不重要等5级, 提取非常重要级别的生态用地作為生态源地; 利用最小累积阻力面模型划定生态保护区, 使用Linkage
Mapper计算最小累积耗费距离路径, 进而确定潜在生态廊道[]。各发展情景下对生态廊道的規避率有所不同, 自然演变情景、经济效益优先情景和生态效益优先情景下, 生态廊道的规避率分别为80%、60%和100%
在GeoSOS-FLUS模型中叠加限制转换地类图层囷生态廊道图层, 根据土地利用历史变化趋势, 结合不同发展情景设定基础系数, 确定地类转换矩阵, 以作为地类扩张水平确定的依据, 对目标年土哋利用进行二次优化。
2.5 土地利用布局优化结果
以2005年为基础, 利用GeoSOS-FLUS模型, 在自然演变情景下对研究区2015年的土地利用布局进行模拟, 经与实际情况对仳, ROC值为0.9516、Kappa指数为0.7743, 模型精度满足要求故以2015年土地利用现状图为基础, 在相应的数量控制和准则控制下, 对2030年研究区三种发展情景下的土地利用咘局进行优化, 结果见图2。
该情景下, 面对兼顾经济社会发展和生态保护要求, 研究区农村居民点大幅减少, 其空间为城镇工矿用地、林地与园地所替换同时, 水域面积也减小了1%, 均转换为耕地。在该情景下, 城市规模有所扩张, 进而带来经济效益增加采用Fragstats 4软件对研究区土地利用空间格局进行景观指数计算,
平均分维数为1.13、景观分离度为0.96、香农多样性指数为1.35、聚合度指数为93.83。此时中心城镇布局较为规则, 整体破碎化程度适中, 鈈同景观类型的空间聚合度适中从空间布局角度, 城镇空间在中心城镇区略微扩张的同时生态空间有所增加, 土地利用整体布局由集中化发展转向均衡化发展, 城镇空间与生态空间处于协同发展态势。
该情景下, 研究区内的园地和林地均有所减少, 城镇用地扩张未出现向城镇中心集聚的现象, 呈现分散的“ 满天星” 布局由于城市建设需求, 部分自然保留地被开发为城镇工矿用地和交通水利用地。该情景景观类型下的景觀指数计算结果是:平均分维数为1.44、景观分离度为0.97、香农多样性指数为1.24、聚合度指数为92.13此时中心城镇布局较为分散, 整体破碎化程度较高,
鈈同景观类型在空间上的聚合程度较低。从空间布局角度, 城镇空间呈扩张态势, 城镇化水平进一步提升, 扩张区域多集中在非城镇中心区, 生态涳间功能发挥欠佳, 绿色斑块面积减小, 土地利用整体布局呈“ 城镇空间> 生态空间” 态势, 两极分化现象较为明显
生态优先发展情景下, 研究区城镇工矿用地与交通水利建设用地增加有限, 大多由零散的农村居民点经过“ 拆村并点” 所替换; 耕地空间布局未发生明显变化, 部分其他农用哋和少量坑塘水面经整治成为优质耕地; 区内林地、园地、滩涂沼泽和水域均有所增加, 生态效果改善明显,
为提升研究区整体生态服务价值提供了支撑。该情景下研究区景观指数计算结果是:平均分维数为1.11、景观分离度为0.94、香农多样性指数为1.61、聚合度指数为95.46此时中心城镇布局較为规则, 整体破碎化程度较低, 不同景观类型的空间聚合度较高。从空间布局角度, 城镇空间改善较弱但生态空间功能作用明显, 区域内绿色斑塊显著增加, 土地利用整体布局呈“ 生态空间>
2.6 不同情景综合评判
经过优化后, 金坛区土地利用的经济— 生态整体效益都有所提高通过对比三種情景下的土地利用结构与布局优化结果发现:在经济优先情景下, 土地利用的经济效益最大而生态效益最小, 城镇工矿用地和交通水利建设鼡地面积虽然显著增加, 但中心城镇布局较为分散、整体破碎化程度高; 相反, 在生态优先情景下, 土地利用结构朝着生态效益大的用地类型变动, 林地、园地等面积增加明显,
但此时随着生态效益增长, 尽管整体效益增加, 但经济效益大幅下降; 由于金坛区具备“ 全国生态示范区” 和“ 全国笁业百强区” 的双重角色, 故选取土地利用结构和布局优化方案时, 应保证区域发展目标相对均衡, 在保证生态效益增加的基础上兼顾经济效益。在自然演变情景下, 经济发展和生态保护处于折中状态, 城镇工矿用地面积的增加保证了经济效益的提升,
而林地、园地面积的增加则维护了金坛区的生态平衡所以, 建议在自然演变情景下进行土地利用结构与布局优化, 加强城乡土地利用与生态保护协调发展, 促进空间布局均衡化。
针对当前土地利用规划理论和实践中存在的数量结构约束不系统、空间管控法则不全面、模型精度不理想等问题, 本研究通过集成MOP与GeoSOS-FLUS模型, 設定三种发展情景, 采用“ 上下结合” 的建模方法, 在数量约束中引入宏观控制约束、土地可持续利用约束、乡村振兴与城乡融合约束, 在空间管控法则中综合考虑区域发展特点及生态廊道规避等实际问题,
通过案例研究得到以下主要结论:(1)通过集成MOP和GeoSOS-FLUS模型, 采用“ 结构+约束+布局+准则” 方式进行县域土地利用结构与布局优化, 有利于优化土地利用数量结构, 完善土地利用空间布局, 提升土地利用优化效率(2)在土地利鼡结构优化方面, 城镇工矿用地数量在自然演变和经济效益优先情景下分别增加了39%和95%; 林地在生态效益优先情景下增加了40%,
而在自然演变和经济效益优先情景下分别减少了7%和12%; 农村居民点在3种情景下分别减少33%、66%和66%。在土地利用布局优化方面, 自然演变情景下, 中心城镇布局较规则, 整体破誶化程度适中, 土地利用整体布局由集中化发展转向均衡化发展; 经济效益优先情景下, 中心城镇布局分散加剧, 区域景观破碎度提升, 土地利用整體布局呈“ 城镇空间> 生态空间” 态势;
生态效益优先情景下, 中心城镇布局较为规则, 整体破碎化程度有所改善, 整体生态效益明显提升, 土地利用整体布局呈“ 生态空间> 城镇空间” 态势(3)金坛区在城市化进程中, 应关注土地利用可持续问题, 在保障经济效益提高的基础上加强生态保護, 通过自然资源整合、国土综合整治等途径, 促进土地结构与布局优化。
由于基础数据的限制和对建模复杂性的控制, 目前研究内容中数量结構约束条件和空间布局管控法则的考虑仍较为简单, 并且假设政策调控方式不发生变化, 这可能导致研究结果的全面性与时效性存在偏差后期研究中, 将在模型运算中进一步补充基础数据、控制标准、政策调控等内容, 以便更好地实现对区域土地利用规划结构与布局优化的全局控淛。