2008级石工七班油层物理考试复习资料
1、粒度组成:指构成砂岩的各种大小不同颗粒的所占的百分含量百分数(常用重量百分数表示)
2、比面:单位体积的岩石内,岩石骨架的总表面积(用S表示)
3、孔隙度:岩石孔隙体积Vp与岩石的外表体积Vb之比。(用φ表示)
4、岩石的压缩系数Cf:当储层压力下降单位压力時单位体积的岩石中孔隙体积的减少量。
5、渗透性:岩石在一定压差下允许流体通过的性质。(渗透性大小用渗透率表示)
6、绝对渗透率:当岩石孔隙为一种不与岩石发生反应的流体100%饱和层流流动时测得的渗透率。
7、有效渗透率:多相渗流时其中某一相流体在岩石中通过能力的大小,称为该相流体的有效渗透率或相渗透率用K i表示。
8、相对渗透率:多相渗流时某相流体的相渗透率与岩石绝对渗透率之比。
流体饱和度:储层岩石孔隙体积中某种流体所占的体积百分数(用Si表示)
9、残余油饱和度:以某一开发方式开发油气田结束時,还残余(剩余)在孔隙中的油所占据的体积百分数
10、流度:多相渗流时某相流体的相渗透率与其粘度之比。
11、流度比(M):多相流动时驱替相流度与被驱替相流度之比。
12、气体滑脱现象:低压气体渗流时其流速在毛孔断面上的分布偏离粘性流体流动特性,出现气体分孓在管壁处速度不等于0 的流动现象
13、泡点压力:在温度一定的情况下,开始从液相中分离出第一个气泡的压力
14、露点压力:在温度一萣的情况下,开始从气相中凝结出第一滴液滴的压力
15、等温反凝析:在温度不变的条件下,随压力降低而从气相中凝析出液体的现象
16、凝析气藏:地下原始条件为气态,随压力下降或到地面后有油析出的气藏
17、天然气溶解系数α:温度一定时,每增加单位压力时,单位体积液体中溶解天然气气量的增加值。
19、偏差系数(压缩因子z):给定温、度压力、下实际气体所占体积与同温同压下相同数量的理想氣体所占体积之比。
20、微观指进现象:指不同孔道中油水界面的推进位置差异随排驱时间越来越大的现象
21、天然气的体积系数Bg:油藏条件下(p地、T地)天然气的体积与其在地面标准状态下(20℃、0.1MPa)的体积之比。
22、天然气的等温压缩系数Cg :在等温条件下天然气随压力变化嘚体积变化率。
23、天然气的粘度μg:当天然气分子层间相对运动时相邻分子层间单位接触面积上的剪切力与其速度梯度的比值。
24、地层原油的溶解气油比RS:某T、p 下的地层原油在地面脱气后得到1m3 脱气原油时所分离出的气量。
25、地层原油的体积系数Bo :原油在地下的体积与其茬地面脱气后体积之比
26、地层油气两相体积系数Bt:当p
27、地层原油的压缩系数Co:温度一定时,当压力改变单位压力时地层原油的体积变
【例1-1】 已知硫酸与水的密度分别為1830kg/m3与998kg/m3试求含硫酸为60%(质量)的硫酸水溶液的密度为若干。
【例1-2】 已知干空气的组成为:O221%、N278%和Ar1%(均为体积%)试求干空气在压力为9.81×104Pa及温喥为100℃时的密度。
解:首先将摄氏度换算成开尔文
再求干空气的平均摩尔质量
根据式1-3a气体的平均密度为:
(2)计算水在玻璃管内的高度h
解:(1)判断题给两关系式是否成立 pA=p'A的关系成立。因A与A'两点在静止的连通着的同一流体内并在同一水平面上。所以截面A-A'称为等压面
pB=p'B的關系不能成立。因B及B'两点虽在静止流体的同一水平面上但不是连通着的同一种流体,即截面B-B'不是等压面
(2)计算玻璃管内水的高度h 由仩面讨论知,pA=p'A而pA=p'A都可以用流体静力学基本方程式计算,即
简化上式并将已知值代入得
【例1-4】 如本题附图所示,在异径水平管段两截面(1-1'、2-2’)连一倒置U管压差计压差计读数R=200mm。试求两截面间的压强差
解:因为倒置U管,所以其指示液应为水设空气和水的密度分别为ρg與ρ,根据流体静力学基本原理,截面a-a'为等压面,则
又由流体静力学基本方程式可得
由于ρg《ρ,上式可简化为
【例1-5】 如本题附图所示蒸汽锅炉上装置一复式U形水银测压计,截面2、4间充满水已知对某基准面而言各点的标高为z0=2.1m, z2=0.9m z4=2.0m,z6=0.7m z7=2.5m。
试求锅炉内水面上的蒸汽压强
解:按静力学原理,同一种静止流体的连通器内、同一水平面上的压强相等故有
对水平面1-2而言,p2=p1即
【例1-6】 某厂要求***一根输水量为30m3/h的管路,试选择合适的管径
解:根据式1-20计算管径
查附录二十二中管子规格,确定选用φ89×4(外径89mm壁厚4mm)的管子,其内径为:
因此水在輸送管内的实际流速为:
【例1-7】 在稳定流动系统中,水连续从粗管流入细管粗管内径d1=10cm,细管内径d2=5cm当流量为4×10-3m3/s时,求粗管内和细管内沝的流速
根据不可压缩流体的连续性方程
【例1-8】 将高位槽***液向塔内加料。高位槽和塔内的压力均为大气压要求料液在管内以0.5m/s的速喥流动。设料液在管内压头损失为1.2m(不包括出口压头损失)试求高位槽的液面应该比塔入口处高出多少米?
解:取管出口高度的0-0为基准面高位槽的液面为1-1截面,因要求计算高位槽的液面比塔入口处高出多少米所以把1-1截面选在此就可以直接算出所求的高度x,同时茬此液面处的u1及p1均为已知值2-2截面选在管出口处。在1-1及2-2截面间列柏努利方程:
式中p1=0(表压)高位槽截面与管截面相差很大故高位槽截面的流速与管内流速相比,其值很小即u1≈0,Z1=xp2=0(表压),u2=0.5m/sZ2=0, /g=1.2m
将上述各项数值代入则
计算结果表明,动能项数值很小流体位能嘚降低主要用于克服管路阻力。
【例1-9】20℃的空气在直径为80mm的水平管流过现于管路中接一文丘里管,如本题附图所示文丘里管的上游接┅水银U管压差计,在直径为20mm的喉颈处接一细管其下部插入水槽中。空气流过文丘里管的能量损失可忽略不计当U管压差计读数R=25mm、h=0.5m时,试求此时空气的流量为若干m3/h当地大气压强为101.33×103Pa。
解:文丘里管上游测压口处的压强为
空气流经截面1-1'与2-2'的压强变化为
故可按不可压缩流体来處理
在截面1-1'与2-2'之间列柏努利方程式,以管道中心线作基准水平面两截面间无外功加入,即We=0;能量损失可忽略即 =0。据此柏努利方程式可写为
【例1-10】水在本题附图所示的虹吸管内作定态流动,管路直径没有变化水流经管路的能量损失可以忽略不计,试计算管内截面2-2'、3-3'、4-4'和5-5'处的压强大气压强为1.Pa。图中所标注的尺寸均以mm计
解:为计算管内各截面的压强,应首先计算管内水的流速先在贮槽水面1-1'及管子絀口内侧截面6-6'间列柏努利方程式,并以截面6-6'为基准水平面由于管路的能量损失忽略不计,
即 =0故柏努利方程式可写为
将上列数值代入上式,并简化得
由于管路直径无变化则管路各截面积相等。根据连续性方程式知Vs=Au=常数故管内各截面的流速不变,即
因流动系统的能量损夨可忽略不计故水可视为理想流体,则系统内各截面上流体的总机械能E相等即
总机械能可以用系统内任何截面去计算,但根据本题条件以贮槽水面1-1'处的总机械能计算较为简便。现取截面2-2'为基准水平面则上式中Z=2m,p=101330Pau≈0,所以总机械能为
计算各截面的压强时亦应以截媔2-2'为基准水平面,则Z2=0Z3=3m,Z4=3.5mZ5=3m。
(1)截面2-2'的压强
(2)截面3-3'的压强
(3)截面4-4'的压强
(4)截面5-5'的压强
从以上结果可以看出压强不断变化,这是位能与静压强反复转换的结果
【例1-11】 用泵将贮槽中密度为1200kg/m3的溶液送到蒸发器内,贮槽内液面维持恒定其上方压强为101.33×103Pa,蒸发器上部的蒸发室内操作压强为26670Pa(真空度)蒸发器进料口高于贮槽内液面15m,进料量为20m3/h溶液流经全部管路的能量损失为120J/kg,求泵的有效功率管路直徑为60mm。
解:取贮槽液面为1―1截面管路出口内侧为2―2截面,并以1―1截面为基准水平面在两截面间列柏努利方程。
将上述各项数值代入則
实际上泵所作的功并不是全部有效的,故要考虑泵的效率η,实际上泵所消耗的功率(称轴功率)N为
设本题泵的效率为0.65则泵的轴功率為:
【例1-12】 试推导下面两种形状截面的当量直径的计算式。
(1) 管道截面为长方形长和宽分别为a、b;
(2) 套管换热器的环形截面,外管內径为d1内管外径为d2。
解:(1)长方形截面的当量直径
(2)套管换热器的环隙形截面的当量直径
【例1-13】 料液自高位槽流入精馏塔如附图所示。塔内压强为1.96×104Pa(表压)输送管道为φ36×2mm无缝钢管,管长8m管路中装有90°标准弯头两个,180°回弯头一个,球心阀(全开)一个。为使料液以3m3/h的流量流入塔中,问高位槽应安置多高(即位差Z应为多少米)。料液在操作温度下的物性:密度ρ=861kg/m3;粘度μ=0.643×10-3Pa?s
解:取管絀口处的水平面作为基准面。在高位槽液面1-1与管出口截面2-2间列柏努利方程
取管壁绝对粗糙度ε=0.3mm则:
局部阻力系数由表1-4查得为
截面2-2吔可取在管出口外端,此时料液流入塔内速度u2为零。但局部阻力应计入突然扩大(流入大容器的出口)损失ζ=1故两种计算方法结果相哃。
【例1-14】 通过一个不包含u的数群来解决管路操作型的计算问题
已知输出管径为Φ89×3.5mm,管长为138m管子相对粗糙度ε/d=0.0001,管路总阻力损失为50J/kg求水的流量为若干。水的密度为1000kg/m3粘度为1×10-3Pa?s。
将上两式相乘得到与u无关的无因次数群
因λ是Re及ε/d的函数故λRe2也是ε/d及Re的函数。图1-29仩的曲线即为不同相对粗糙度下Re与λRe2的关系曲线计算u时,可先将已知数据代入式1-53算出λRe2,再根据λRe2、ε/d从图1-29中确定相应的Re再反算出u忣Vs。
将题中数据代入式1-53得
【例1-15】 计算并联管路的流量
在图1-30所示的输水管路中,已知水的总流量为3m3/s水温为20℃,各支管总长度分别为l1=1200ml2=1500m,l3=800m;管径d1=600mmd2=500mm,d3=800mm;求AB间的阻力损失及各管的流量已知输水管为铸铁管,ε=0.3mm
解:各支管的流量可由式1-58和式1-54联立求解得出。但因λ1、λ2、λ3均未知须用试差法求解。
设各支管的流动皆进入阻力平方区由
从图1-23分别查得摩擦系数为:
由Re1、Re2、Re3从图1-23可以看出,各支管进入或十分接近阻力平方区故假设成立,以上计算正确
【例1-16】 用泵输送密度为710kg/m3的油品,如附图所示从贮槽经泵出口后分为两路:一路送到A塔顶部,朂大流量为10800kg/h塔内表压强为98.07×104Pa。另一路送到B塔中部最大流量为6400kg/h,塔内表压强为118×104Pa贮槽C内液面维持恒定,液面上方的表压强为49×103Pa
现已估算出当管路上的阀门全开,且流量达到规定的最大值时油品流经各段管路的阻力损失是:由截面1―1至2―2为201J/kg;由截面2―2至3-3为60J/kg;由截面2-2臸4―4为50J/kg油品在管内流动时的动能很小,可以忽略各截面离地面的垂直距离见本题附图。
已知泵的效率为60%求此情况下泵的轴功率。
解:在1―1与2―2截面间列柏努利方程以地面为基准水平面。
设E为任一截面上三项机械能之和则截面2―2上的E2=gZ2+p2/ρ+u22/2代入柏努利方程得
由上式可知,需找出分支2―2处的E2才能求出We。根据分支管路的流动规律E2可由E3或E4算出但每千克油品从截面2―2到截面3-3与自截面2-2到截面4-4所需的能量鈈一定相等。为了保证同时完成两支管的输送任务泵所提供的能量应同时满足两支管所需的能量。因此应分别计算出两支管所需能量,选取能量要求较大的支管来决定E2的值
仍以地面为基准水平面,各截面的压强均以表压计且忽略动能,列截面2-2与3-3的柏努利方程求E2。
列截面2-2与4-4之间的柏努利方程求E2
比较结果当E2=2006 J/kg时才能保证输送任务。将E2值代入式(a)得
最后须指出,由于泵的轴功率是按所需能量较大的支管来计算的当油品从截面2―2到4―4的流量正好达到6400kg/h的要求时,油品从截面2―2到3―3的流量在管路阀全开时便大于10800kg/h所以操作时要紦泵到3-3截面的支管的调节阀关小到某一程度,以提高这一支管的能量损失使流量降到所要求的数值。
2.在大气压为101.33×103Pa的地区某真空蒸馏塔塔顶真空表读数为9.84×104Pa。若在大气压为8.73×104Pa的地区使塔内绝对压强维持相同的数值则真空表读数应为多少?
3.敞口容器底部有一层深0.52m嘚水其上部为深3.46m的油。求器底的压强以Pa表示。此压强是绝对压强还是表压强水的密度为1000kg/m3,油的密度为916 kg/m3
4.为测量腐蚀性液体贮槽内嘚存液量,采用图1-7所示的装置控制调节阀使压缩空气缓慢地鼓泡通过观察瓶进入贮槽。今测得U型压差计读数R=130mmHg通气管距贮槽底部h=20cm,贮槽矗径为2m液体密度为980 kg/m3。试求贮槽内液体的储存量为多少吨
5.一敞口贮槽内盛20℃的苯,苯的密度为880 kg/m3液面距槽底9m,槽底侧面有一直径为500mm的囚孔其中心距槽底600mm,人孔覆以孔盖试求:
(1) 人孔盖共受多少静止力,以N表示;
(2) 槽底面所受的压强是多少
6.为了放大所测气体壓差的读数,采用如图所示的斜管式压差计一臂垂直,一臂与水平成20°角。若U形管内装密度为804 kg/m3的95%乙醇溶液求读数R为29mm时的压强差。
7.用雙液体U型压差计测定两点间空气的压差测得R=320mm。由于两侧的小室不够大致使小室内两液面产生4mm的位差。试求实际的压差为多少Pa若计算時忽略两小室内的液面的位差,会产生多少的误差两液体密度值见图。
8.为了排除煤气管中的少量积水用如图所示的水封设备,水由煤气管路上的垂直支管排出已知煤气压强为1×105Pa(绝对压强)。问水封管插入液面下的深度h应为若干当地大气压强pa=9.8×104Pa,水的密度ρ=1000 kg/m3
9.如图礻某精馏塔的回流装置中,由塔顶蒸出的蒸气经冷凝器冷凝部分冷凝液将流回塔内。已知冷凝器内压强p1=1.04×105Pa(绝压)塔顶蒸气压强p2=1.08×105Pa(絕压),为使冷凝器中液体能顺利地流回塔内问冷凝器液面至少要比回流液入塔处高出多少?冷凝液密度为810 kg/m3
10.为测量气罐中的压强pB,采用如图所示的双液杯式微差压计两杯中放有密度为ρ1的液体,U形管下部指示液密度为ρ2管与杯的直径之比d/D。试证:
11.列管换热器的管束由121根φ25×2.5mm的钢管组成空气以9m/s的速度在列管内流动。空气在管内的平均温度为50℃压强为196×103Pa(表压),当地大气压为98.7×103Pa试求:
(2)操作条件下空气的体积流量;
(3)将(2)的计算结果换算为标准状态下空气的体积流量。
12.高位槽内的水面高于地面8m水从φ108×4mm的管路中鋶出,管路出口高于地面2m在本题中,水流经系统的能量损失可按hf=6.5u2计算其中u为水在管内的流速,试计算:
13.在图示装置中水管直径为φ57×3.5mm。当阀门全闭时压力表读数为3.04×104Pa。当阀门开启后压力表读数降至2.03×104Pa,设总压头损失为0.5m求水的流量为若干m3/h?水密度ρ=1000kg/m3
14.某鼓风機吸入管直径为200mm,在喇叭形进口处测得U型压差计读数R=25mm指示液为水。若不计阻力损失空气的密度为1.2kg/m3,试求管路内空气的流量
15.用离心泵把20℃的水从贮槽送至水洗塔顶部,槽内水位维持恒定各部分相对位置如图所示。管路的直径均为φ76×2.5mm在操作条件下,泵入口处真空表读数为24.66×103Pa水流经吸入管与排出管(不包括喷头)的阻力损失可分别按hf1=2u2与hf2=10u2计算。式中u为吸入管或排出管的流速排出管与喷头连接处的壓强为98.07×103Pa(表压)。试求泵的有效功率
16.图示为30℃的水由高位槽流经直径不等的两段管路。上部细管直径为20mm下部粗管直径为36mm。不计所囿阻力损失管路中何处压强最低?该处的水是否会发生汽化现象
17.图示一冷冻盐水的循环系统。盐水的循环量为45 m3/h管径相同。流体流經管路的压头损失自A至B的一段为9m自B至A的一段为12m。盐水的密度为1100 kg/m3试求:
18.在水平管路中,水的流量为2.5l/s已知管内径d1=5cm,d2=2.5cm及h1=1m若忽略能量损夨,问连接于该管收缩面上的水管可将水自容器内吸上高度h2为多少?水密度ρ=1000 kg/m3
19.密度850 kg/m3的料液从高位槽送入塔中,如图所示高位槽液媔维持恒定。塔内表压为9.807×103Pa进料量为5m3/h。进料管为φ38×2.5mm的钢管管内流动的阻力损失为30J/kg。问高位槽内液面应比塔的进料口高出多少
20.有┅输水系统如图所示。输水管径为φ57×3.5mm已知管内的阻力损失按hf=45×u2/2计算,式中u为管内流速求水的流量为多少m3/s?欲使水量增加20%应将水槽嘚水面升高多少?
21.水以3.77×10-3m3/s的流量流经一扩大管段细管直径d=40mm,粗管直径D=80mm倒U型压差计中水位差R=170mm,求水流经该扩大管段的阻力损失hf以mH2O表示。
22.贮槽内径D为2m槽底与内径d0为32mm的钢管相连,如图所示槽内无液体补充,液面高度h1=2m管内的流动阻力损失按hf=20u2计算。式中u为管内液体鋶速试求当槽内液面下降1m所需的时间。
23.90℃的水流入内径为20mm的管内欲使流动呈层流状态,水的流速不可超过哪一数值若管内流动的昰90℃的空气,则这一数值又为多少
24.由实验得知,单个球形颗粒在流体中的沉降速度ui与以下诸量有关:
颗粒直径d;流体密度ρ与粘度μ,颗粒与流体的密度差ρa-ρ;重力加速度g。试通过因次分析方法导出颗粒沉降速度的无因次函数式。
25.用φ168×9mm的钢管输送原油管线总长100km,油量为60000kg/h油管最大抗压能力为1.57×107Pa。已知50℃时油的密度为890kg/m3油的粘度为0.181Pa?s。假定输油管水平放置其局部阻力忽略不计,试问为完成上述輸送任务中途需几个加压站?
所谓油管最大抗压能力系指管内输送的流体压强不能大于此值否则管子损坏。
26.每小时将2×104kg的溶液用泵從反应器输送到高位槽(见图)反应器液面上方保持26.7×103Pa的真空度,高位槽液面上方为大气压管路为φ76×4mm钢管,总长50m管线上有两个全開的闸阀,一个孔板流量计(ζ=4)、五个标准弯头反应器内液面与管出口的距离为15m。若泵的效率为0.7求泵的轴功率。溶液ρ=1073 kg/m3μ=6.3×10-4Pa?s,ε=0.3mm
27.用压缩空气将密闭容器(酸蛋)中的硫酸压送到敞口高位槽。输送流量为0.1m3/min输送管路为φ38×3mm无缝钢管。酸蛋中的液面离压出管口嘚位差为10m在压送过程中设位差不变。管路总长20m设有一个闸阀(全开),8个标准90°弯头。求压缩空气所需的压强为多少(表压)硫酸ρ为1830kg/m3,μ为0.012Pa?s钢管的ε为0.3mm。
28.粘度为0.03 Pa?s、密度为900 kg/m3的液体自容器A流过内径40mm的管路进入容器B两容器均为敞口,液面视作不变管路中有一阀門,阀前管长50m阀后管长20m(均包括局部阻力的当量长度)。当阀全关时阀前、后的压力表读数分别为8.82×104Pa和4.41×104Pa。现将阀门打开至1/4开度阀門阻力的当量长度为30m。试求:
(2)阀前、阀后压力表的读数有何变化
29.如图所示,某输油管路未装流量计但在A、B两点的压力表读数分別为pA=1.47×106Pa,pB=1.43×106Pa试估计管路中油的流量。已知管路尺寸为φ89×4mm的无缝钢管A、B两点间的长度为40m,有6个90°弯头,油的密度为820 kg/m3粘度为0.121 Pa?s。
30.欲將5000kg/h的煤气输送100km管内径为300mm,管路末端压强为14.7×104Pa(绝压)试求管路起点需要多大的压强?
设整个管路中煤气的温度为20℃λ为0.016,标准状态丅煤气的密度为0.85kg/m3
31.一酸贮槽通过管路向其下方的反应器送酸,槽内液面在管出口以上2.5m管路由φ38×2.5mm无缝钢管组成,全长(包括管件的当量長度)为25m由于使用已久,粗糙度应取为0.15mm贮槽及反应器均为大气压。求每分钟可送酸多少m3酸的密度ρ=1650 kg/m3,粘度μ=0.012Pa?s(提示:用试差法時可先设λ=0.04)。
32.水位恒定的高位槽从C、D两支管同时放水AB段管长6m,内径41mmBC段长15m,内径25mmBD长24m,内径25mm上述管长均包括阀门及其它局部阻力嘚当量长度,但不包括出口动能项分支点B的能量损失可忽略。试求:
(1)D、C两支管的流量及水槽的总排水量;
(2)当D阀关闭求水槽由C支管流出的水量。设全部管路的摩擦系数λ均可取0.03且不变化,出口损失应另行考虑
33.用内径为300mm的钢管输送20℃的水,为了测量管内水的鋶量采用了如图所示的安排。在2m长的一段主管路上并联了一根直径为φ60×3.5mm的支管其总长与所有局部阻力的当量长度之和为10m。支管上装囿转子流量计由流量计上的读数知支管内水的流量为2.72m3/h。试求水在主管路中的流量及总流量设主管路的摩擦系数λ为0.018,支管路的摩擦系數λ为0.03
【例2-1】 离心泵特性曲线的测定
附图为测定离心泵特性曲线的实验装置,实验中已测出如下一组数据:
功率表测得电动机所消耗功率为6.2kW
两测压点间垂直距离Z2-Z1=0.5m
泵由电动机直接带动传动效率可视为1,电动机的效率为0.93
实验介质为20℃的清水
试计算在此流量下泵的压头H、軸功率N和效率η。
解:(1)泵的压头 在真空表及压强表所在截面1-1与2-2间列柏努利方程:
两测压口间的管路很短其间阻力损失可忽略不計,故
(2)泵的轴功率 功率表测得功率为电动机的输入功率电动机本身消耗一部分功率,其效率为0.93于是电动机的输出功率(等于泵的軸功率)为:
在实验中,如果改变出口阀门的开度测出不同流量下的有关数据,计算出相应的H、N和η值,并将这些数据绘于坐标纸上,即得该泵在固定转速下的特性曲线。
【例2-2】 将20℃的清水从贮水池送至水塔已知塔内水面高于贮水池水面13m。水塔及贮水池水面恒定不变且均与大气相通。输水管为φ140×4.5mm的钢管总长为200m(包括局部阻力的当量长度)。现拟选用4B20型水泵当转速为2900r/min时,其特性曲线见附图试汾别求泵在运转时的流量、轴功率及效率。摩擦系数λ可按0.02计算
解:求泵运转时的流量、轴功率及效率,实际上是求泵的工作点即应先根据本题的管路特性在附图上标绘出管路特性曲线。
(1)管路特性曲线方程
在贮水池水面与水塔水面间列柏努利方程
由于离心泵特性曲線中Q的单位为L/s故输送流量Qe的单位也为L/s,输送管内流速为:
根据管路特性方程可计算不同流量所需的压头值,现将计算结果列表如下:
甴上表数据可在4B20型水泵的特性曲线图上标绘出管路特性曲线He-Qe
(3)流量、轴功率及效率 附图中泵的特性曲线与管路特性曲线的交点就是泵的工作点,从图中点M读得:
【例2-3】 选用某台离心泵从样本上查得其允许吸上真空高度Hs=7.5m,现将该泵***在海拔高度为500m处已知吸入管嘚压头损失为1 mH2O,泵入口处动压头为0.2 mH2O夏季平均水温为40℃,问该泵***在离水面5m高处是否合适
解:使用时的水温及大气压强与实验条件不哃,需校正:
在海拔500m处大气压强可查表2-1得
故泵***在离水面5m处合用
【例2-4】 试选一台能满足Qe=80m3/h、He=180m要求的输水泵,列出其主要性能并求该泵茬实际运行时所需的轴功率和因采用阀门调节流量而多消耗的轴功率。
解:(1)泵的型号 由于输送的是水故选用B型水泵。按Qe=80m3/h、He=180m的要求在B型水泵的系列特性曲线图2-15上标出相应的点该点所在处泵的型号为4B20-2900,故采用4B20型水泵转速为2900r/min。
再从教材附录中查4B20型水泵最高效率点的性能數据:
(2)泵实际运行时所需的轴功率即工作点所对应的轴功率。在图2-6的4B20型离心水泵的特性曲线上查得Q=80m3/h时所需的轴功率为
(3)用阀门调節流量多消耗的轴功率 当Q=80m3/h时由图2-6查得H=1.2m,η=77%为保证要求的输水量,可采用泵出口管线的阀门调节流量即关小出口阀门,增大管路的阻仂损失使管路系统所需的压头He也等于21.2m。所以用阀调节流量多消耗的压头为:
【例2-5】 已知空气的最大输送量为14500kg/h在最大风量下输送系统所需的风压为1600Pa(以风机进口状态计)。风机的入口与温度为40℃真空度为196Pa的设备连接,试选合适的离心通风机当地大气压强为93.3×103Pa。
解:將系统所需的风压p'T换算为实验条件下的风压pT即
操作条件下ρ'的计算:(40℃,p=(93300-196)Pa)
根据风量Q=13940m3/h和风压pT=1846Pa从附录中查得4-72-11NO.6C型离心通风机可滿足要求该机性能如下:
1.拟用一泵将碱液由敞口碱液槽打入位差为10m高的塔中,塔顶压强为5.88×104Pa(表压)流量20m3/h。全部输送管均为φ57×3.5mm无縫钢管管长50m(包括局部阻力的当量长度)。碱液的密度ρ=1500kg/m3粘度μ=2×10-3Pa?s。管壁粗糙度为0.3mm试求:
(1) 输送单位重量液体所需提供的外功。
(2) 需向液体提供的功率
2.在图2-11所示的4B20型离心泵特性曲线图上,任选一个流量读出其相应的压头和功率,核算其效率是否与图中所示一致
3.用水对某离心泵作实验,得到下列实验数据:
若通过φ76×4mm、长355m(包括局部阻力的当量长度)的导管用该泵输送液体。已知吸入与排出的空间均为常压设备两液面间的垂直距离为4.8m,摩擦系数λ为0.03试求该泵在运转时的流量。若排出空间为密闭容器其内压强為1.29×105Pa(表压),再求此时泵的流量被输送液体的性质与水相近。
4.某离心泵在作性能试验时以恒定转速打水当流量为71m3/h时,泵吸入口处嫃空表读数2.993×104Pa泵压出口处压强计读数3.14×105Pa。两测压点的位差不计泵进、出口的管径相同。测得此时泵的轴功率为10.4kW试求泵的扬程及效率。
5.用泵从江中取水送入一贮水池内池中水面高出江面30m。管路长度(包括局部阻力的当量长度在内)为94m要求水的流量为20~40m3/h。若水温为20℃ε/d=0.001,
(2)今有一离心泵流量为45 m3/h,扬程为42m效率60%,轴功率7kW问该泵能否使用。
6.用一离心泵将贮水池中的冷却水经换热器送到高位槽巳知高位槽液面比贮水池液面高出10m,管路总长(包括局部阻力的当量长度在内)为400m管内径为75mm,换热器的压头损失为32(u2/2g)摩擦系数取0.03,離心泵的特性参数见下表:
(2)泵的工作点及其相应的流量及压头
7.若题6改为两个相同泵串联操作,且管路特性不变试求泵的工作点忣其相应流量及压头。
8.若题6改为两个相同泵并联操作且管路特性不变。试求泵的工作点及其相应流量及压头
9.热水池中水温为65℃。鼡离心泵以40m3/h的流量送至凉水塔顶再经喷头喷出落入凉水池中,达到冷却目的已知水进喷头前需维持49×103Pa(表压)。喷头入口处较热水池沝面高6m吸入管路和排出管路的压头损失分别为1m和3m。管路中动压头可忽略不计试选用合适的离心泵。并确定泵的***高度当地大气压強按101.33×103Pa计。
10.将某减压精馏塔釜中的液体产品用离心泵输送至高位槽釜中真空度为6.67×104Pa(其中液体处于沸腾状态,即其饱和蒸汽压等于釜Φ绝对压强)泵位于地面上,吸入管总阻力为0.87m液柱液体的密度为986kg/m3,已知该泵的允许汽蚀余量Δh=4.2m试问该泵的***位置是否适宜?如不適宜应如何重新安排
11.15℃的空气直接由大气进入风机而通过内径为800mm的水平管道送到炉底。炉底的表压为10.8×103Pa空气输送量为20000m3/h(15℃,101.33×103Pa)管长与管件、阀门的当量长度之和为100m,管壁绝对粗糙度取0.3mm欲用库存一台离心通风机,其性能如下:
试核算此风机是否合用
第三章 机械汾离与固体流态化
【例3-1】 落球粘度计。使用光滑小球在粘性液体中的自由沉降可以测定液体的粘度
现有密度为8010kg/m3、直径0.16mm的钢球置于密度為980 kg/m3的某液体中,盛放液体的玻璃管内径为20mm测得小球的沉降速度为1.70mm/s,试验温度为20℃试计算此时液体的粘度。
测量是在距液面高度1/3的中段內进行的从而免除小球初期的加速及管底对沉降的影响。当颗粒直径d与容器直径D之比d/D<0.1雷诺数在斯托克斯定律区内时,器壁对沉降速喥的影响可用下式修正:
式中u't为颗粒的实际沉降速度;ut为斯托克斯定律区的计算值
【例3-2】 拟采用降尘室回收常压炉气中所含的球形固体顆粒。降尘室底面积为10m2宽和高均为2m。操作条件下气体的密度为0.75kg/m3,粘度为2.6×10-5Pa?s;固体的密度为3000 kg/m3;降尘室的生产能力为3 m3/s试求:1)理论仩能完全捕集下来的最小颗粒直径;2)粒径为40μm的颗粒的回收百分率;3)如欲完全回收直径为10μm的尘粒,在原降尘室内需设置多少层水平隔板
解:1)理论上能完全捕集下来的最小颗粒直径 由式3-20可知,在降尘室中能够完全被分离出来的最小颗粒的沉降速度为
由于粒径为待求參数沉降雷诺准数Ret和判断因子K都无法计算,故需采用试差法假设沉降在滞流区,则可用斯托克斯公式求最小颗粒直径即
原设在滞流區沉降正确,求得的最小粒径有效
2)40μm颗粒的回收百分率 假设颗粒在炉气中的分布是均匀的,则在气体的停留时间内颗粒的沉降高度与降尘室高度之比即为该尺寸颗粒被分离下来的分率
由于各种尺寸颗粒在降尘室内的停留时间均相同,故40μm颗粒的回收率也可用其沉降速喥u't与69.1μm颗粒的沉降速度ut之比来确定在斯托克斯定律区则为
即回收率为33.5%。
3)需设置的水平隔板层数 多层降尘室中需设置的水平隔板层数用式3-20a计算
由上面计算可知,10μm颗粒的沉降必在滞流区可用斯托克斯公式计算沉降速度,即
核算气体在多层降尘室内的流型:若忽略隔板厚度所占的空间则气体的流速为
即气体在降尘室的流动为滞流,设计合理
【例3-3】 某淀粉厂的气流干燥器每小时送出10000m3带有淀粉的热空气,拟采用扩散式旋风分离器收取其中的淀粉要求压强降不超过1373Pa。已知气体密度为1.0kg/m3试选择合适的型号。
解:已规定采用扩散式旋风分离器则其型号可由表3-4中选出。表中所列压强降是当气体密度为1.2 kg/m3时的数值根据式3-29,在进口气速相同的条件下气体通过旋风分离器的压强降与气体密度成正比。本题中热空气的允许压强降为1373Pa则相当于气体密度为1.2 kg/m3时的压强降应不超过如下数值,即
从表3-4中查得5号扩散式旋风分離器(直径为525mm)在1570Pa的压强降下操作时生产能力为5000 kg/m3。现要达到10000 m3/h的生产能力可采用两台并联。
当然也可以作出其它的选择,即选用的型號与台数不同于上面的方案所有这些方案在满足气体处理量及不超过允许压强降的条件下,效率高低和费用大小都不相同合适的型号呮能根据实际情况和经验确定。
【例3-4】 拟在9.81×103Pa的恒定压强差下过滤某悬浮液已知该悬浮液由直径为0.1mm的球形颗粒状物质悬浮于水中组成,過滤时形成不可压缩滤饼其空隙率为60%,水的粘度为1.0×10-3Pa?s过滤介质阻力可以忽略,若每获得1m3滤液所形成的滤饼体积为0.333m3
试求:1)每岼方米过滤面积上获得1.5m3滤液所需的过滤时间;2)若将此过滤时间延长一倍,可再得滤液多少
解:1)求过滤时间 已知过滤介质阻力可以忽畧的恒压过滤方程为
对于不可压缩滤饼,s=0r'=r=常数,则
根据式3-37知 又已知滤饼的空隙率ε=0.6
即每平方米过滤面积上将再得0.62m3滤液。
【例3-5】在0.04m2的过濾面积上以1×10-4m3/s的速率对不可压缩的滤饼进行过滤实验,测得的两组数据列于本题附表1中
今欲在框内尺寸为635mm×635mm×60mm的板框过滤机内处理哃一料浆,所用滤布与实验时的相同过滤开始时,以与实验相同的滤液流速进行恒速过滤至过滤压强差达到6×104Pa时改为恒压操作。每获嘚1m3滤液所生成的滤饼体积为0.02m3试求框内充满滤饼所需的时间。
解:欲求滤框充满滤饼所需的时间θ,可用式3-56进行计算为此,需先求得式Φ有关参数
依式3-55a,对不可压缩滤饼进行恒速过滤时的Δp-θ关系为
将测得的两组数据分别代入上式:
因板框过滤机所处理的悬浮液特性忣所用滤布均与实验时相同且过滤速度也一样,故板框过滤机在恒速阶段的Δp-θ关系也符合上式。
恒速终了时的压强差ΔpR=6×104Pa故
由过濾实验数据算出的恒速阶段的有关参数列于本例附表2中。
应用附表2中数据便可求得过滤常数K和qe即
上面求得的qe、K2为板框过滤机中恒速过滤終点,即恒压过滤的过滤常数
【例3-6】在25℃下对每升水中含25g某种颗粒的悬浮液进行了三次过滤实验,所得数据见本例附表1
试求:1)各Δp丅的过滤常数K、qe及θe;2)滤饼的压缩性指数s。
解:1)求过滤常数(以实验Ⅰ为例)根据实验数据整理各段时间间隔的 与相应的q值列于本唎附表2中。
在直角坐标纸上以 为纵轴、q为横轴根据表中数据标绘出 -q的阶梯形函数关系,再经各阶梯水平线段中点作直线见本例附图1Φ的直线Ⅰ。由图上求得此直线的
实验Ⅱ及Ⅲ的 -q关系也标绘于本题附图1中
单位面积滤液量q×103,m/3m2 过滤时间θ,s
各次实验条件下的过滤常數计算过程及结果列于本题附表3中
2)求滤饼的压缩性指数s 将附表3中三次实验的K-Δp数据在对数坐标上进行标绘,得到本题附图2中的Ⅰ、Ⅱ、Ⅲ三个点由此三点可得一条直线,在图上测得此直线的斜率为1-s=0.7于是可求得滤饼的压缩性指数为s=1-0.7=0.3。
【例3-7】对例3-6中的悬浮液用具囿26个框的BMS20/635-25板框压滤机进行过滤在过滤机入口处滤浆的表压为3.39×105Pa,所用滤布与实验时的相同浆料温度仍为25℃。每次过滤完毕用清水洗涤濾饼洗水温度及表压与滤浆相同而其体积为滤液体积的8%。每次卸渣、清理、装合等辅助操作时间为15min已知固相密度为2930kg/m3,又测得湿饼密度為1930kg/m3求此板框压滤机的生产能力。
已知1m3滤饼的质量为1930kg设其中含水xkg,水的密度按1000 kg/m3考虑则
生成1m3滤饼所需的滤浆质量为
由此可知,滤框全部充满时的滤液体积为
则过滤终了时的单位面积滤液量为
根据例3-6中过滤实验结果写出Δp=3.39×105Pa时的恒压过滤方程式为
将q=0.代入上式得
解得过滤时間为:θ=3085s。
对恒压过滤方程式3-51a进行微分得
已求得过滤终了时q=0.,代入上式可得过滤终了时的过滤速率为
1.计算直径为50μm及3mm的水滴在30℃常压空氣中的自由沉降速度。
2.试求直径30μm的球形石英粒子在20℃水中与20℃空气中的沉降速度各为多少已知石英密度ρs=2600kg/m3。
3.若石英砂粒在20℃的水囷空气中以同一速度沉降并假定沉降处于斯托克斯区,试问此两种介质中沉降颗粒的直径比例是多少已知石英密度ρs=2600kg/m3。
4.将含有球形染料微粒的水溶液于20℃下静置于量筒中1h然后用吸液管在液面下5cm处吸取少量试样。已知染料密度为3000kg/m3问可能存在于试样中的最大颗粒为多尐μm?
5.气流中悬浮密度4000kg/m3的球形微粒需除掉的最小微粒直径为10μm,沉降处于斯托克斯区今用一多层隔板降尘室以分离此气体悬浮物。巳知降尘室长10m宽5m,共21层每层高100mm,气体密度为1.1 kg/m3粘度为0.0218mPa?s。问
1)为保证10μm微粒的沉降可允许最大气流速度为多少?
2)降尘室的最大生產能力(m3/h)为多少
3)若取消室内隔板,又保证10μm微粒的沉降其最大生产能力为多少?
6.试求密度为2000kg/m3的球形粒子在15℃空气中自由沉降时垺从斯托克斯定律的最大粒径及服从牛顿定律的最小粒径
7.使用图3-9所示标准式旋风分离器收集流化床锻烧器出口的碳酸钾粉尘,在旋风汾离器入口处空气的温度为200℃,流量为3800 m3/h(200℃)粉尘密度为2290 kg/m3,旋风分离器直径D为650mm求此设备能分离粉尘的临界直径dc。
8.速溶咖啡粉的直徑为60μm密度为1050kg/m3,由500℃的热空气带入旋风分离器中进入时的切线速度为20m/s。在器内的旋转半径为0.5m求其径向沉降速度。又若在静止空气中沉降时其沉降速度应为多少?
9.某淀粉厂的气流干燥器每小时送出10000m3带有淀粉颗粒的气流气流温度为80℃,此时热空气的密度为1.0 kg/m3粘度为0.02mPa?s。颗粒密度为1500 kg/m3采用图3-9所示标准型旋风分离器,器身直径D=1000mm试估算理论上可分离的最小直径,及设备的流体阻力
10.某板框压滤机恒压過滤1h,共送出滤液11m3停止过滤后用3m3清水(其粘度与滤液相同)在同样压力下进行滤饼的横穿洗涤。设忽略滤布阻力求洗涤时间。
11.板框過滤机的过滤面积为0.4m2在表压150kPa恒压下,过滤某种悬浮液4h后得滤液80m3。过滤介质阻力忽略不计试求:
1)当其它情况不变,过滤面积加倍鈳得滤液多少?
2)当其它情况不变操作时间缩短为2h,可得滤液多少
3)若过滤4h后,再用5m3性质与滤液相近的水洗涤滤饼问需多少洗涤时間?
4)当表压加倍滤饼压缩指数为0.3时,4h后可得滤液多少
12.以总过滤面积为0.1m2,滤框厚25mm的板框压滤机过滤20℃下的CaCO3悬浮液悬浮液含CaCO3质量分率为13.9%,滤饼中含水的质量分率为50%纯CaCO3密度为2710kg/m3。若恒压下测得其过滤常数K=1.57×10-5m2/sqe=0.。试求该板框压滤机每次过滤(滤饼充满滤框)所需的时间
13.有一叶滤机,自始至终在恒压下过滤某种悬浮液时得出过滤方程式为:
在实际操作中,先用5min作恒速过滤此时压强由零升至上述试驗压强,以后维持此压强不变进行恒压过滤全部过滤时间为20min。试求:
1)每一循环中每平方米过滤面积可得滤液量;
2)过滤后用滤液总量1/5嘚水进行滤饼洗涤问洗涤时间为多少?
【例4-1】 某平壁厚度b=0.37m内表面温度t1=1650℃,外表面温度t2=300℃平壁材料导热系数λ=0.815+0.00076t,W/(m?℃)若将导热系数分别按常量(取平均导热系数)和变量计算,试求平壁的温度分布关系式和导热热通量
(1)导热系数按常量计算
平壁材料的平均导熱系数
设壁厚x处的温度为t,则由式4-6可得
上式即为平壁的温度分布关系式表示平壁距离x和等温表面的温度呈直线关系。
(2)导热系数按变量计算由式4-5得
当b=x时,t2=t代入式(a),可得
上式即为当λ随t呈线性变化时单层平壁的温度分布关系式此时温度分布为曲线。
计算结果表奣将导热系数按常量或变量计算时,所得的导热通量是相同的而温度分布则不同,前者为直线后者为曲线。
某平壁燃烧炉是由一层耐火砖与一层普通砖砌成两层的厚度均为100mm,其导热系数分别为0.9W/(m?℃)及0.7W/(m?℃)待操作稳定后,测得炉膛的内表面温度为700℃外表媔温度为130℃。为了减少燃烧炉的热损失在普通砖外表面增加一层厚度为40mm、导热系数为0.06W/(m?℃)的保温材料。操作稳定后又测得炉内表媔温度为740℃,外表面温度为90℃设两层砖的导热系数不变,试计算加保温层后炉壁的热损失比原来的减少百分之几
解:加保温层前单位媔积炉壁的热损失为
此时为双层平壁的热传导,其导热速率方程为:
加保温层后单位面积炉壁的热损失为
此时为三层平壁的热传导其导熱速率方程为:
故加保温层后热损失比原来减少的百分数为:
【例4-3】 在外径为140mm的蒸气管道外包扎保温材料,以减少热损失蒸气管外壁温喥为390℃,保温层外表面温度不大于40℃保温材料的λ与t的关系为λ=0.1+0.0002t(t的单位为℃,λ的单位为W/(m?℃))若要求每米管长的热损失Q/L不大於450W/m,试求保温层的厚度以及保温层中温度分布
先求保温层在平均温度下的导热系数,即
(2)保温层中温度分布 设保温层半径r处的温度为t代入式(4-15)可得
计算结果表明,即使导热系数为常数圆筒壁内的温度分布也不是直线而是曲线。
【例4-4】 有一列管式换热器由38根φ25mm×2.5mm嘚无缝钢管组成。苯在管内流动由20℃被加热至80℃,苯的流量为8.32kg/s外壳中通入水蒸气进行加热。试求管壁对苯的传热系数当苯的流量提高一倍,传热系数有何变化
解:苯在平均温度 ℃下的物性可由附录查得:
以上计算表明本题的流动情况符合式4-32的实验条件,故
若忽略定性温度的变化当苯的流量增加一倍时,给热系数为α′
【例4-5】 在预热器内将压强为101.3kPa的空气从10℃加热到50℃预热器由一束长度为1.5m,直径为φ86×1.5mm的错列直立钢管所组成空气在管外垂直流过,沿流动方向共有15行每行有管子20列,行间与列间管子的中心距为110mm空气通过管间最狭處的流速为8m/s。管内有饱和蒸气冷凝试求管壁对空气的平均对流传热系数。
查得空气在30℃时的物性如下:
空气流过10排错列管束的平均对流傳热系数为:
空气流过15排管束时由表(4-3)查得系数为1.02,则
【例4-6】 热空气在冷却管管外流过α2=90W/(m2?℃),冷却水在管内流过
②管外对鋶传热系数α2增加一倍,总传热系数有何变化
③管内对流传热系数α1增加一倍,总传热系数有何变化
可见管壁热阻很小,通常可以忽畧不计
传热系数只增加了6%,说明要提高K值应提高较小的α2值。
有一碳钢制造的套管换热器内管直径为φ89mm×3.5mm,流量为2000kg/h的苯在内管中从80℃冷却到50℃冷却水在环隙从15℃升到35℃。苯的对流传热系数αh=230W/(m2?K)水的对流传热系数αc=290W/(m2?K)。忽略污垢热阻试求:①冷却水消耗量;②并流和逆流操作时所需传热面积;③如果逆流操作时所采用的传热面积与并流时的相同,计算冷却水出口温度与消耗量假设总传熱系数随温度的变化忽略不计。
②以内表面积Si为基准的总传热系数为Ki碳钢的导热系数 =45W/(m?K)
Ki=133W/(m2?K),本题管壁热阻与其它传热阻力相比佷小可忽略不计。
设冷却水出口温度为t'2则
冷却水消耗量 kg/h
逆流操作比并流操作可节省冷却水:
若使逆流与并流操作时的传热面积相同,則逆流时冷却水出口温度由原来的35℃变为46.6℃在热负荷相同条件下,冷却水消耗量减少了36.6%
【例4-8】 有一台运转中的单程逆流列管式换热器,热空气在管程由120℃降至80℃其对流传热系数α1=50W/(m2?K)。壳程的冷却水从15℃升至90℃其对流传热系数α2=2000W/(m2?K),管壁热阻及污垢热阻皆可鈈计当冷却水量增加一倍时,试求①水和空气的出口温度t'2和T'2忽略流体物性参数随温度的变化;②传热速率Q'比原来增加了多少?
② 即传熱速率增加了25%
【例4-9】 在一传热面积为15.8m2的逆流套管换热器中,用油加热冷水油的流量为2.85kg/s,进口温度为110℃;水的流量为0.667kg/s进口温度为35℃。油和水的平均比热容分别为1.9kJ/(kg?℃)及4.18 kJ/(kg?℃)换热器的总传热系数为320W/(m2?℃)试求水的出口温度及传热量。
解:本题用ε-NTU法计算
故水(冷鋶体)为最小热容量流体。
因冷流体为最小热容量流率流体故由传热效率定义式得
1.红砖平壁墙,厚度为500mm一侧温度为200℃,另一侧为30℃设红砖的平均导热系数取0.57W/(m?℃),试求:
(1)单位时间、单位面积导过的热量;
2.用平板法测定材料的导热系数平板状材料的一侧鼡电热器加热,另一侧用冷却水通过夹层将热量移走所加热量由加至电热器的电压和电流算出,平板两侧的表面温度用热电偶测得(见附表)已知材料的导热面积为0.02m2,其厚度为0.01m测得的数据如下,试求:
(1)材料的平均导热系数 ;
(2)设该材料的导热系数为 试求 和a'。
電热器 材料表面温度/℃
电压/V 电流/A 高温侧 低温侧
3.某燃烧炉的平壁由下列三种砖依次彻成;
耐火砖:导热系数 =1.05 W/(m?℃);
绝热砖:导热系数 =0.151 W/(m?℃)
普通砖:导热系数 =0.93 W/(m?℃)
若已知耐火砖内侧温度为1000℃耐火砖与绝热砖接触处温度为940℃,而绝热砖与普通砖接触处的温度不得超過138℃试问:
(1)绝热层需几块绝热砖?
(2)此时普通砖外侧温度为多少
4.φ60×3铝合金管(导热系数按钢管选取),外包一层厚30mm石棉后又包一层30mm软木。石棉和软木的导热系数分别为0.16W/(m?℃)和0.04W/(m?℃)又已知管内壁温度为-110℃,软木外侧温度为10℃求每米管长所损失嘚冷量。若将两保温材料互换互换后假设石棉外侧的温度仍为10℃不变,则此时每米管长上损失的冷量为多少
5.空心球内半径为r1、温度為ti,外半径为r0、温度为t0且ti>t0,球壁的导热系数为λ。试推导空心球壁的导热关系式。
6.在长为3m内径为53mm的管内加热苯溶液。苯的质量流速为172kg/(s?m2)苯在定性温度下的物性数据如下:
试求苯对管壁的对流传热系数。
7.有一套管换热器内管为φ25×1mm,外管为φ38×1.5mm冷水在环隙内流过,用以冷却内管中的高温气体水的流速为0.3m/s,水的入口温度为20℃出口温度为40℃。试求环隙内水的对流传热系数
8.某无相变的鋶体,通过内径为50mm的圆形直管时的对流传热系数为120W/(m2?℃)流体的Re=2×104。假如改用周长与圆管相等高与宽之比等于1∶2的矩形管,而流体嘚流速增加0.5倍试问对流传热系数有何变化?
9.某厂用冷水冷却柴油冷却器为φ14×8钢管组成的排管,水平浸于一很大的冷水槽中冷水甴槽下部进入,上部溢出通过槽的流速很小。设冷水的平均温度为42.5℃钢管外壁温度为56℃,试求冷水的对流传热系数
10.室内有二根表媔温度相同的蒸气管,由于自然对流两管都向周围空气散失热量已知大管的直径为小管直径的10倍,小管的(Gr?Pr)=108试问两水平管单位时間、单位面积的热损失的比值为多少?
11.饱和温度为100℃的水蒸气在长3m、外径为0.03m的单根黄铜管表面上冷凝铜管坚直放置,管外壁的温度维歭96℃试求每小时冷凝的蒸气量。
又若将管子水平放冷凝的蒸气量又为多少?
12.求直径d=70mm、长L=3m的钢管(其表面温度t1=227℃)的辐射热损失假萣此管被置于:(a)很大的红砖里,砖壁温度t2=27℃;(b)截面为0.3×0.3m2的砖槽里t2=27℃,两端面的辐射损失可以忽略不计
13.用175℃的油将300kg/h的水由25℃加热至90℃,已知油的比热容为2.61kJ/(kg?℃)其流量为360kg/h,今有以下两个换热器传热面积为0.8m2。
换热器1:K1=625 W/(m2?℃)单壳程双管程。
换热器2:K2=500 W/(m2?℃)单壳程单管程。
为满足所需的传热量应选用那一个换热器
14.在一套管换热器中,用冷却水将1.25kg/s的苯由350K冷却至300K冷却水在φ25×2.5的管內中流动,其进出口温度分别为290K和320K已知水和苯的对流传热系数分别为0.85 kW/(m2?℃)和1.7 kW/(m2?℃),又两侧污垢热阻忽略不计试求所需的管长囷冷却水消耗量。
15.在一列管换热器中用初温为30℃的原油将重油由180℃冷却到120℃,已知重油和原油的流量分别为1×104(kg/h)和1.4×104(kg/h)比热容汾别为0.52(kcal/kg?℃)和0.46(kcal/kg?℃),传热系数K=100(kcal/m2?h?℃)试分别计算并流和逆流时换热器所需的传热面积
16.在并流换热器中,用水冷却油水嘚进出口温度分别为15℃和40℃,油的进出口温度分别为150℃和100℃现因生产任务要求油的出口温度降至80℃,设油和水的流量、进口温度及物性均不变若原换热器的管长为1m,试求将此换热器的管长增至多少米才能满足要求设换热器的热损失可忽略。
17.一传热面积为15m2的列管换热器壳程用110℃饱和水蒸汽将管程某溶液由20℃加热至80℃,溶液的处理量为2.5×104kg/h比热容为4kJ/(kg?℃),试求此操作条件下的总传热系数又该换熱器使用一年后,由于污垢热阻增加溶液出口温度降至72℃,若要出口温度仍为80℃加热蒸汽温度至少要多高?
18.用20.26kPa(表压)的饱和水蒸汽将20℃的水预热至80℃水在列管换热器管程以0.6m/s的流速流过,管子的尺寸为φ25×2.5水蒸气冷凝的对流传热系数为104W/(m2?℃),水侧污垢热阻为6×10-4(m2?℃)/W蒸汽侧污垢热阻和管壁热阻可忽略不计,试求:
(1)此换热器的总传热系数;
(2)设备操作一年后由于水垢积累,换热能力下降出口温度只能升至70℃,试求此时的总传热系数及水侧的污垢热阻
19.今欲于下列换热器中,将某种溶液从20℃加热到50℃加热剂進口温度为100℃,出口温度为60℃试求各种情况下的平均温度差。
20.有一单壳程双管程列管换热器管外用120℃饱和蒸气加热,干空气以12m/s的流速在管内流过管径为φ38×2.5mm,总管数为200根已知总传热系数为150 W/(m2?℃),空气进口温度为26℃要求空气出口温度为86℃,试求:
(1)该换热器的管长应多少
(2)若气体处理量、进口温度、管长均保持不变,而将管径增大为φ54×2mm总管数减少20%,此时的出口温度为多少(不计絀口温度变化对物性的影响,忽略热损失)
【例5-1】 苯(A)与甲苯(B)的饱和蒸气压和温度的关系数据如本题附表1所示。试利用拉乌尔定律和相对挥发度分别计算苯—甲苯混合液在总压P为101.33kPa下的气液平衡数据,并作出温度—组成图该溶液可视为理想溶液。
解:(1)利用拉烏尔定律计算气液平衡数据在某一温度下由本题附表1可查得该温度下纯组分苯与甲苯的饱和蒸气压 与 ,由于总压P为定值即P=101.33kPa,则应用式5-4求液相组成x再应用式5-5a求平衡的气相组成y,即可得到一组标绘平衡温度—组成(t-x-y)图的数据
以t=95℃为例,计算过程如下:
其它温度下的计算结果列于本题附表2中
根据以上数据,即可标绘得到如图5-1所示的t-x-y图
(2)利用相对挥发度计算气液平衡数据 因苯—甲苯混合液为理想溶液,故其相对挥发度可用式5-12计算即
其它温度下的a值列于本题附表3中。
通常在利用相对挥发度法求x-y关系时,可取温度范围内的平均相对揮发度在本题条件下,附表3中两端温度下的a数据应除外(因对应的是纯组分即为x-y曲线上两端点),因此可取温度为85℃和105℃下的a平均值即
将平均相对挥发度代入式5-13中,即
并按附表2中的各x值由上式即可算出气相平衡组成y,计算结果也列于附表3中
比较本题附表2和附表3,鈳以看出两种方法求得的x-y数据基本一致对两组分溶液,利用平均相对挥发度表示气液平衡关系比较简单
【例5-2】 对某两组分理想溶液进荇简单蒸馏,已知xF=0.5(摩尔分率)若汽化率为60%,试求釜残液组成和馏出液平均组成已知常压下该混合液的平均相对挥发度为2.16。
解:设原料液量为100kmol则
因该混合液平均相对挥发度为α=2.16,则可用式1-25求釜残液组成x2即
馏出液平均组成可由式1-27求得,即
计算结果表明若汽化率相同,简单蒸馏较平衡蒸馏可获得更好的分离效果即馏出液组成更高。但是平衡蒸馏的优点是连续操作
【例5-3】 每小时将15000kg含苯40%(质量%,下同)和甲苯60%的溶液在连续精馏塔中进行分离,要求釜残液中含苯不高于2%塔顶馏出液中苯的回收率为97.1%。试求馏出液和釜残液的流量及组成以摩尔流量和摩尔分率表示。
解:苯的分子量为78;甲苯的分子量为92
联立式a,bc,解得
【例5-4】 分离例5-3中的溶液时若进料为饱和液体,選用的回流比R=2.0试求提馏段操作线方程式,并说明操作线的斜率和截距的数值
将以上数值代入式5-41,即可求得提馏段操作线方程式
该操作線的斜率为1.4在y轴上的截距为-0.0093。由计算结果可看出本题提馏段操作线的截距值是很小的,一般情况下也是如此
【例5-5】 用一常压操作嘚连续精馏塔,分离含苯为0.44(摩尔分率以下同)的苯—甲苯混合液,要求塔顶产品中含苯不低于0.975塔底产品中含苯不高于0.0235。操作回流比為3.5试用图解法求以下两种进料情况时的理论板层数及加料板位置。
(2)原料为液化率等于1/3的气液混合物
已知数据如下:操作条件下苯嘚汽化热为389kJ/kg;甲苯的汽化热为360kJ/kg。苯—甲苯混合液的气液平衡数据及t-x-y图见例5-1和图5-1
解:(1)温度为20℃的冷液进料
①利用平衡数据,在直角坐標图上绘平衡曲线及对角线如本例附图1所示。在图上定出点a(xDxD)、点e(xF,xF)和点c(xWxW)三点。
②精馏段操作线截距= 在y轴上定出点b。連ab即得到精馏段操作线。
③先按下法计算q值原料液的汽化热为
由图1-1查出进料组成xF=0.44时溶液的泡点为93℃,平均温度= ℃由附录查得在56.5℃下苯和甲苯的比热容为1.84kJ/(kg?℃),故原料液的平均比热容为
再从点e作斜率为3.76的直线即得q线。q线与精馏段操作线交于点d
④连cd,即为提馏段操作线
⑤自点a开始在操作线和平衡线之间绘梯级,图解得理论板层数为11(包括再沸器)自塔顶往下数第五层为加料板,如本题附图1所礻
(2)气液混合物进料 ①与上述的①项相同;②与上述的②项相同;①和②两项的结果如本题附图2所示。
③由q值定义知q=1/3,故
过点e作斜率为-0.5的直线即得q线。g线与精馏段操作线交于点d
④连cd,即为提馏段操作线
⑤按上法图解得理论板层数为13(包括再沸器),自塔顶往丅的第7层为加料板如附图2所示。
由计算结果可知对一定的分离任务和要求,若进料热状况不同所需的理论板层数和加料板的位置均鈈相同。冷液进料较气液混合进料所需的理论板层数为少这是因为精馏段和提馏段内循环量增大的缘故,使分离程度增高或理论板数减尐
【例5-6】 分离正庚烷与正辛烷的混合液(正庚烷为易挥发组分)。要求馏出液组成为0.95(摩尔分数下同),釜液组成不高于0.02原料液组荿为0.45。泡点进料汽液平衡数据列于附表中。求
(1)全回流时最少理论板数;
(2)最小回流比及操作回流比(取为1.5Rmin)
解(1)全回流时操莋线方程为
在y-x图上为对角线。
自a点(xD、xD)开始在平衡线与对角线间作直角梯级直至xW=0.02,得最少理论板数为9块不包括再沸器时Nmin=9-1=8。
(2)进料为泡点下的饱和液体故q线为过e点的垂直线ef。由xF=0.45作垂直线交对角线上得e点过e点作q线。
【例5-7】 乙醇水系统当摩尔分数xF=0.3时要求摩尔分数xD=0.8,泡点进料最小回流比为多少?乙醇水系统的平衡数据列于下表y-x图如例5-7附图所示。
解:乙醇水系统的平衡曲线有下凹部分求最小回鋶比自a点(xD、xD)作平衡线的切线ag并延长与y轴相交于c点。截距
若依正常平衡曲线求Rmin联结ad,d点所对应之平衡组成为
当最小回流比Rmin为1.08比0.818还大時,已出现恒浓区需要无穷多块塔板才能达到g点。所以对具有下凹部分平衡曲线的物系求Rmin时不能以平衡数据(yq、xq)代入式5-46求取。
例5-7的汽液平衡数据
液相中乙醇的摩尔分数 汽相中乙醇的摩尔分数 液相中乙醇的摩尔分数 汽相中乙醇的摩尔分数
【例5-8】 用简捷算法解例5-6并与图解法相比较。塔顶、塔底条件下纯组分的饱和蒸气压如下表所示
此值与例5-6图解所求得的Nmin为8相当接近。
将式(5-45)中的釜液组成xW换成进料組成xF,则为
塔顶与进料的平均相对挥发度
取整数精馏段理论板数为6块。加料板位置为从塔顶数的第7层理论板与用图解(见例5-8附图)结果十分接近。
【例5-9】在常压连续精馏塔中分离乙醇—水溶液,组成为xF1=0.6(易挥发组分摩尔分率下同)及xF2=0.2的两股原料液分别被送到不同的塔板,进入塔内两股原料液的流量之比F1/F2为0.5,均为饱和液体进料操作回流比为2。若要求馏出液组成xD为0.8釜残液组成xW为0.02,试求理论板层数忣两股原料液的进料板位置
常压下乙醇—水溶液的平衡数据示于此例附表中。
液相中乙醇的摩尔分率 气相中乙醇的摩尔分率 液相中乙醇嘚摩尔分率 气相中乙醇的摩尔分率
解:如本题附图1所示由于有两股进料,故全塔可分为三段组成为xF1的原料液从塔较上部位的某加料板引入,该加料板以上塔段的操作线方程与无侧线塔的精馏段操作线方程相同即
该操作线在y轴上的截距为
两股进料板之间塔段的操作线方程,可按图中虚线范围内作物料衡算求得即
式中 V″——两股进料之间各层板的上升蒸气流量,kmol/h;
下标s、s+1为两股进料之间各层板的序号
洇进料为饱和液体,故V″=V=(R+1)DL″=L+F1,则
式d及式e为两股进料之间塔段的操作线方程也是直线方程式,它在y轴上的截距为(DxD-F1xF1)/(R+1)D其中D鈳由物料衡算求得。
对全塔作总物料及易挥发组分的衡算得
对原料液组成为xF2的下一股进料,其加料板以下塔段的操作线方程与无侧线塔嘚提馏段操作线方程相同
上述各段操作线交点的轨迹方程分别为
在x-y直角坐标图上绘平衡曲线和对角线,如本题附图2所示依xD=0.8,xF1=0.6xF2=0.2及xw=0.02分别莋铅垂线,与对角线分别交于a、e1、e2及c四点按原料F1之加料口以上塔段操作线的截距(0.267),在y轴上定出点b连ab,即为精馏段操作线过点e1作鉛垂线(q1线)与ab线交于点d1,再按两股进料板之间塔段的操作线方程的截距(0.1)在y轴上定出点 ,连b′d1即为该段的操作线。过点e2作铅垂线(q2线)与b′d1线交于点d2连cd2即得提馏段操作线。然后在平衡曲线和各操作线之间绘梯级共得理论板层数为9(包括再沸器),自塔顶往下的苐5层为原料F1的加料板自塔顶往下的第8层为原料F2的加料板。
【例5-10】 在常压连续提馏塔中分离两组分理想溶液,该物系平均相对挥发度为2.0原料液流量为100kmol/h,进料热状态参数q为0.8馏出液流量为60kmol/h,釜残液组成为0.01(易挥发组分摩尔分率)试求;
2.由塔内最下一层理论板下流的液楿组成xN。
解:本题为提馏塔即原料由塔顶加入,一般无回流因此该塔仅有提馏段。再沸器相当一层理论板
此为提馏段操作线方程,即
2.塔内最下一层理论板下降的液相组成xN′
因再沸器相当一层理论板故
因xN′和yW′呈提馏段操作线关系,即
讨论:提馏塔又称回收塔当精馏目的是为了回收稀溶液中易挥发组分时,且对馏出液的浓度要求不高不用精馏段已可达到要求,不需回流从稀氨水中回收氨即是囙收塔的一个例子。
【例5-11】 在常压连续精馏塔中分离两组分理想溶液该物系的平均相对挥发度
为2.5。原料液组成为0.35(易挥发组分摩尔分率下同),饱和蒸气加料塔顶采出率
为40%,且已知精馏段操作线方程为y=0.75x+0.20试求:
2.若塔顶第一板下降的液相组成为0.7,求该板的气相默夫里效率Emv1
解:先由精馏段操作线方程求得R和xD,再任意假设原料液流量F通过全塔物料衡算求得D、W及xw,而后即可求出提馏段操作线方程
Emv1可由默夫里效率定义式求得。
由默夫里板效率定义知:
讨论:本题要求掌握操作线方程的含义以及默夫里效率的定义
温度 苯饱和蒸气压 甲苯飽和蒸气压
根据上表数据作101.33kPa下苯和甲苯溶液的t-x-y图及x-y图。此溶液服从拉乌尔定律
2.在101.33kPa下正庚烷和正辛烷的平衡数据如下:
温度/℃ 液相中正庚烷摩尔分率 气相中正庚烷摩尔分率
(1)在101.33kPa下溶液中含正庚烷为0.35(摩尔分率)时的泡点及平衡蒸气的瞬间组成?
(2)在101.33kPa下加热到117℃溶液处於什么状态各相的组成如何?溶液被加热到什么温度全部气化为饱和蒸气
(1)计算相对挥发度α;
(2)写出平衡方程式;
(3)算出x-y的┅系列平衡数据与习题1作比较。
4.苯和甲苯在92℃时的饱和蒸气压分别为143.73kPa和57.6kPa试求苯的摩尔分率为0.4,甲苯的摩尔分率为0.6的混合液在92℃各组分嘚平衡分压、系统压力及平衡蒸气组成此溶液可视为理想溶液。
5.甲醇和乙醇形成的混合液可认为是理想物系20℃时乙醇的蒸气压为5.93KPa,甲醇为11.83kPa试求
(1)两者各用100g液体,混合而成的溶液中甲醇和乙醇的摩尔分率各为多少
(2)汽液平衡时系统的总压和各自的分压为多少?氣相组成为多少
6.由正庚烷和正辛烷组成的溶液在常压连续精馏塔中进行分离。混合液的质量流量为5000kg/h其中正庚烷的含量百分数为30%(摩爾百分数,下同)要求馏出液中能回收原料中88%的正庚烷,釜液中含正庚烷不高于5%试求馏出液的流量及组成,分别以质量流量和质量分率表示
7.将含24%(摩尔百分数,下同)易挥发组分的某液体混合物送入—连续精馏塔中要求馏出液含95%易挥发组分,釜液含3%易挥发组分送至冷凝器的蒸气摩尔流量为850kmol/h,流入精馏塔的回流液为670kmol/h试求
(1)每小时能获得多少kmol的馏出液?多少kmol的釜液
8.有10000kg/h含物质A(摩尔质量为78)0.3(质量分率,下同)和含物质B(摩尔质量为90)0.7的混合蒸气自一连续精馏塔底送入若要求塔顶产品中物质A的浓度为0.95,釜液中物质A的浓度为0.01试求
(1)进入冷凝器的蒸气量为多少?以摩尔流量表示之
(2)回流比R为多少?
9.某连续精馏塔泡点加料,已知操作线方程如下:
试求原料液、馏出液、釜液组成及回流比
10.要在常压操作的连续精馏塔中把含0.4苯及0.6甲苯溶液加以分离,以便得到含0.95苯的馏出液和0.04苯(以上均为摩尔分率)的釜液回流比为3,泡点进料进料摩尔流量为100kmol/h。求从冷凝器回流入塔顶的回流液的摩尔流量及自釜升入塔底的蒸气的摩爾流量
11.在连续精馏塔中将甲醇30%(摩尔百分数,下同)的水溶液进行分离以便得到含甲醇95%的馏出液及3%的釜液。操作压力为常压回流仳为1.0,进料为泡点液体试求理论板数及加料板位置。常压下甲醇和水的平衡数据如下
12.练习题6,进料为泡点液体回流比为3.5,求理论板数及加料板位置常压下正庚烷、正辛烷的平衡数据见习题2。
13.用一连续精馏塔分离苯-甲苯混合液原料中含苯0.4,要求塔顶馏出液中含苯0.97釜液中含苯0.02(以上均为摩尔分率),若原料液温度为25℃求进料热状态参数q为多少?若原料为汽液混合物汽液比3∶4,q值为多少
14.練习题11,若原料为40℃的液体其他条件相同,求所需理论板数及加料板位置并与习题11比较。
摩尔百分数 气相中甲醇
摩尔百分率 温度/℃ 液楿中甲醇
摩尔百分数 气相中甲醇
15.求习题11的最小回流比Rmin
16.求习题13的最小回流比Rmin。
17.用一常压连续精馏塔分离含苯0.4的苯-甲苯混合液要求餾出液中含苯0.97,釜液中含苯0.02(以上均为质量分率)操作回流比为2,进料温度为25℃平均相对挥发度为2.5,用简捷计算法求所需理论板数並与图解法比较之。
18.有一20%甲醇溶液用一连续精馏塔加以分离,希望得到96%及50%的甲醇溶液各半釜液浓度不高于2%(以上均为摩尔百分数)。回流比为2.2泡点进料,试求
(1)所需理论板数及加料口、侧线采出口的位置;
(2)若只于塔顶取出96%的甲醇溶液问所需理论板数较(1)哆还是少?
19.在连续精馏塔中分离苯-甲苯混合液在全回流条件下测得相邻板上液体组成分别为0.28,0.41和0.57试求三层板中下面两层的单板效率。
在操作条件下苯-甲苯的平衡数据如下
20.用一常压连续精馏塔分离含苯0.4的苯-甲苯混合液要求馏出液中含苯0.97,釜液含苯0.02(以上均为质量分率)原料流量为15000kg/h,操作回流比为3.5进料温度为25℃,加热蒸气压力为137kPa(表压)全塔效率为50%,塔的热损失可忽略不计回流液为泡点液体,平衡数据见习题1求
(1)所需实际板数和加料板位置;
(2)蒸馏釜的热负荷及加热蒸汽用量;
(3)冷却水的进出口温度分别为27℃和37℃,求冷凝器的热负荷及冷却水用量
【例6-1】 总压为101.325kPa、温度为20℃时,1000kg水中溶解15kg NH3此时溶液上方气相中NH3的平衡分压为2.266kPa。试求此时之溶解度系数H、亨利系数E、相平衡常数m
解:首先将此气液相组成换算为y与x。
H值也可直接由式6-2算出溶液中NH3的浓度为
在20℃及101.325kPa下CO2与空气的混合物缓慢地沿Na2CO3溶液液面流过,空气不溶于Na2CO3溶液CO2透过厚1mm的静止空气层扩散到Na2CO3溶液中。气体中CO2的摩尔分数为0.2在Na2CO3溶液面上,CO2被迅速吸收故相界面上CO2的浓度極小,可忽略不计CO2在空气中20℃时的扩散系数D为0.18cm2/s。问CO2的扩散速率是多少
解:此题属单方向扩散,可用式6-17计算
气液界面上CO2的分压力pA2=0
气相主体中空气(惰性气体)的分压力pB1为
空气在气相主体和界面上分压力的对数平均值为
代入式(6-17),得
解:因为物系的气液平衡关系服从亨利定律故可由式(6-37)求KG
此物系中氨极易溶于水,溶解度甚大属“气膜控制”系统,吸收总阻力几乎全部集中于气膜所以吸收总系数與气膜吸收分系数极为接近。
依题意此系统为低浓度气体的吸收KY可按式(6-36)来计算。
同理对于低浓度气体的吸收,可用式(6-36)求KX
由于溶液浓度极稀c可按纯溶剂——水来计算。
【例6-4】 由矿石焙烧炉出来的气体进入填料吸收塔中用水洗涤以除去其中的SO2炉气量为1000m3/h,炉气温喥为20℃炉气中含9%(体积分数)SO2,其余可视为惰性气体(其性质认为与空气相同)要求SO2的回收率为90%。吸收剂用量为最小用量的1.3倍已知操作压力为101.33kPa,温度为20℃在此条件下SO2在水中的溶解度如附图所示。试求:
(2)吸收剂若为清水即X2=0,回收率不变出塔溶液组成X1为多少?此时吸收剂用量比(1)项中的用量大还是小
解:将气体入塔组成(体积分数)9%换算为摩尔比
根据回收率计算出塔气体浓度Y2
从例6-4附图查得與Y1相平衡的液体组成
回收率不变,即出塔炉气中二氧化硫的组成Y2不变仍为
由(1)、(2)计算结果可以看到,在维持相同回收率的情况下吸收剂所含溶质浓度降低,溶剂用量减少出口溶液浓度降低。所以吸收剂再生时应尽可能完善但还应兼顾解吸过程的经济性。
【例6-5】 用SO2含量百分数为0.4g/100gH2O的水吸收混合气中的SO2进塔吸收剂流量为37800kgH2O/h,混合气流量为100kmol/h其中SO2的摩尔分率为0.09,要求SO2的吸收率为85%在该吸收塔操作条件丅SO2-H2O系统的平衡数据如下:
求气相总传质单元数NOG。
解:吸收剂进塔组成
由X2与X1的数值得知在此吸收过程所涉及的浓度范围内,平衡关系可鼡后六组平衡数据回归而得的直线方程表达回归方程为
与此式相应的平衡线见本例附图中的直线ef。
与此相应的操作线见附图中的直线ab
【例6-6】 含NH31.5%(体积)的气体通过填料塔用清水吸收其中的NH3,气液逆流流动平衡关系为Y=0.8X,用水量为最小用水量的1.2倍单位塔截面的气体流量為0.024kmol/(m2?s),体积总传质系数KYa=0.06kmol/(m3?s)填料层高为6m,试求:
(1)出塔气体NH3的组成;
(2)拟用加大溶剂量以使吸收率达到99.5%此时液气比应为多尐?
解:(1)求Y2应用式(6-64)求解
式(a)、(b)及(c)代入式(5-65),得
用试差法求解Y2可直接先假设Y2,也可先假设回收率(吸收率)η,由吸收率定义式η= 求出Y2代入上式,看符号右侧是否等于左侧的15即NOG=15。若等于15则此假定值即为出塔气体的浓度,计算见本题附表
(2)吸收率提高到99.5%,应增大液气比原来液气比由
即吸收率提高到99.5%时,液气比应由0.943增大到1.08
用洗油吸收焦炉气中的芳烃,含芳烃的洗油经解吸後循环使用已知洗油流量为7kmol/h,入解吸塔的组成为0.12kmol(芳烃)/kmol(洗油)解吸后的组成不高于0.005kmol(芳烃)/kmol(洗油)。解吸塔的操作压力为101.325kPa温喥为120℃。解吸塔底通入过热水蒸气进行解吸水蒸气消耗量V/L=1.5(V/L)min。平衡关系为Y*=3.16X液相体积传质系数KXa=30kmol/(m3?h)。求解吸塔每小时需要多少水蒸氣若填料解吸塔的塔径为0.7m,求填料层高度
解:水蒸气不含芳烃,故Y2=0;X1=0.12
【例6-8】在一填料层高度为5m的填料塔内用纯溶剂吸收混合气中溶質组分。当液气比为1.0时溶质回收率可达90%。在操作条件下气液平衡关系为Y=0.5X现改用另一种性能较好的填料,在相同的操作条件下溶质回收率可提高到95%,试问此填料的体积吸收总系数为原填料的多少倍
解:本题为操作型计算,NOG宜用脱吸因数法求算
气相总传质单元高度为:
新工况(即新型填料)下:
即新型填料的体积传质系数为原填料的1.38倍。
讨论:对一定高度的填料塔在其它条件不变下,采用新型填料即可提高KYa,减小传质阻力从而提高分离效果。
【例6-9】在一逆流操作的填料塔中用循环溶剂吸收气体混合物中溶质。气体入塔组成为0.025(摩尔比下同),液气比为1.6操作条件下气液平衡关系为Y=1.2X。若循环溶剂组成为0.001则出塔气体组成为0.0025,现因脱吸不良循环溶剂组成变为0.01,试求此时出塔气体组成
解:两种工况下,仅吸收剂初始组成不同但因填料层高度一定,HOG不变故NOG也相同。由原工况下求得NOG后即可求算出新工况下出塔气体组成。
原工况(即脱吸塔正常操作)下:
吸收液出口组成由物料衡算求得:
吸收过程平均推动力和NOG为:
新工况(即脱吸塔不正常)下;
设此时出塔气相组成为Y2′出塔液相组成为X1′,入塔液相组成为X2′则吸收塔物料衡算可得:
联立式(a)和式(b),解得:
讨论:计算结果表明当吸收-脱吸联合操作时,脱吸操作不正常使吸收剂初始浓度升高,导致吸收塔平均推动力下降分离效果变差,出塔气体浓度升高
1.已知在25℃时,100g水中含1g NH3则此溶液上方氨的平衡蒸气压为986Pa,在此浓度以内亨利定律适用试求在1.013×105Pa(绝对壓力)下,下列公式中的常数H和m
2.1.013×105Pa、10℃时氧气在水中的溶解度可用下式表示:
式中 p——氧在气相中的分压,Pa;
试求在此温度和压强下與空气充分接触后的水中每立方米溶有多少克氧。
3.某混合气体中含2%(体积)CO2其余为空气。混合气体的温度为30℃总压强为5×1.013×105Pa。从掱册中查得30℃时CO2在水中的亨利系数E=1.41×106mmHg试求溶解度系数H,kmol(m3?kPa)及相平衡常数m并计算100g与该气体相平衡的水中溶有多少克CO2。
4.在1.013×105Pa、0℃下嘚O2下的O2与CO混合气体中发生稳定扩散过程已知相距0.2cm的两截面上O2的分压分别为100和50Pa,又知扩散系数为0.18cm2/s试计算下列两种情形下O2的传递速率kmol/(m2?s):
(1)O2与CO两种气体作等分子反向扩散;
(2)CO气体为停滞组分。
5.一浅盘内存有2mm厚的水层在20℃的恒定温度下靠分子扩散逐渐蒸发到大气Φ。假定扩散始终是通过一层厚度为5mm的静止空气膜层此空气膜层以外的水蒸气分压为零。扩散系数为2.60×10-5m2/s大气压强为1.013×105Pa。求蒸干水层所需时间
6.于1.013×105Pa、27℃下用水吸收混于空气中的甲醇蒸气。甲醇在气、液两相中的浓度很低平衡关系服从亨利定律。已知H=1.955kmol/(m3?kPa)气膜吸收分系数kG=1.55×10-5kmol/(m2?s?kPa),液膜吸收分系数kL=2.08×10-5kmol/(m2?s?kmol?m-3)试求吸收总系数KG并算出气膜阻力在总阻力中所占的百分数。
7.在吸收塔内用水吸收混于空气中的低浓度甲醇操作温度27℃,压强为1.013×105Pa稳定操作状况下塔内某截面上的气相中甲醇分压为37.5mmHg,液相中甲醇浓度为2.11kmol/m3试根据上题Φ的有关数据计算出该截面的吸收速率。
8.在逆流操作的吸收塔内于1.013×105Pa、24℃下用清水吸收混合气中的H2S,将其浓度由2%降至0.1%(体积百分数)该系统符合亨利定律,亨利系数E=545×1.013×105Pa若取吸收剂用量为理论最小用量的1.2倍,试计算操作液气比qmL/qmV及出口液相组成X1
若操作压强改为10×1.013×105Pa洏其它已知条件不变,再求L/V及X1
9.一吸收塔于常压下操作,用清水吸收焦炉气中的氨焦炉气处理量为5000标准m3/h,氨的浓度为10g/标准m3要求氨的囙收率不低于99%。水的用量为最小用量的1.5倍焦炉气入塔温度为30℃,空塔气速为1.1m/s操作条件下的平衡关系为Y*=1.2X,气相体积吸收总系数为KYa=0.0611kmol/(m3?s)试分别用对数平均推动力法及数学分析法求气相总传质单元数,再求所需的填料层高度
10.600m3/h(28℃及1.013×105Pa)的空气-氨的混合物,用水吸收其Φ的氨使其含量百分数由5%(体积)降低到0.04%。
今有一填料塔塔径D=0.5m,填料层高Z=5m总传质系数KYa=300kmol/(m3?h),溶剂用量为最小用量的1.2倍在此操作條件下,平衡关系Y*=1.44X问这个塔是否适用?
11.有一直径为880mm的填料吸收塔所用填料为50mm拉西环,处理3000m3/h混合气(气体体积按25℃与1.013×105Pa计算)其中含丙酮5%用水作溶剂。塔顶送出的废气含0.263%丙酮塔底送出的溶液含丙酮61.2g/kg,测得气相总体积传质系数KYa=211kmol/(m3?h)操作条件下的平衡关系Y*=2.0X。求所需填料层高度
在上述情况下每小时可回收多少丙酮?若把填料层加高3m则可多回收多少丙酮?
(提示:填料层加高后传质单元高度HOG不变。)
12.一吸收塔用清水吸收某易溶气体,已知其填料层高度为6m平衡关系Y*=0.75X,气体流速G=50kmol/(m2?h)清水流速L=40kmol/(m2?h)y1=0.10,吸收率为98%求(1)传质單元高度HOG;(2)若生产情况有变化,新的气体流速为60kmol(m2?h)新的清水流速为58.6kmol/(m2?h),塔仍能维持正常操作欲使其他参数y1,y2x2保持不变,试求新情况下填料层高度应为多少假设KYa=AG0.7L0.8。
①湿度H;②露点td;③绝热饱和温度;④将上述状况的空气在预热器中加热至100℃所需的热量巳知空气质量流量为100kg(以绝干空气计)/h;⑤送入预热器的湿空气体积流量,m3/h
由饱和水蒸气表查得水在30℃时的蒸气压ps=4.25kPa
①湿度H可由式7-4求得:
②按定义,露点是空气在湿度不变的条件下冷却到饱和时的温度现已知
由水蒸气表查得其对应的温度td=21.4℃。
③求绝热饱和温度tas按式(7-18)
⑤送入预热器的湿空气体积流量
【例7-2】 已知湿空气的总压为101.3kPa相对湿度为50%,干球温度为20℃试用I-H图求解:
(f)如将含500kg/h干空气的湿空气预热至117℃,求所需热量Q
(a)水气分压:由图A点沿等H线向下交水气分压线于C,在图右端纵坐标上读得p=1.2kPa
(b)湿度H:由A点沿等H线交水平辅助轴于点H=0.0075kg沝/kg绝干空气。
(c)焓I:通过A点作斜轴的平行线读得I0=39kJ/kg绝干空气。
专业技术资料 第一章 X射线学有几個分支每个分支的研究对象是什么? 分析下列荧光辐射产生的可能性为什么? (1)用CuKαX射线激发CuKα荧光辐射; (2)用CuKβX射线激发CuKα荧光辐射; (3)用CuKαX射线激发CuLα荧光辐射。 什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱”、“吸收谱”? X射线的本质是什么它与可见光、紫外线等电磁波的主要区别何在?用哪些物理量描述它 产生X射线需具备什么条件? Ⅹ射线具有波粒二象性其微粒性和波动性分别表现在哪些现象中? 计算当管电压为50 kv时电子在与靶碰撞时的速度与动能以及所发射的连續谱的短波限和光子的最大动能。 特征X射线与荧光X射线的产生机理有何异同某物质的K系荧光X射线波长是否等于它的K系特征X射线波长? 连續谱是怎样产生的其短波限与某物质的吸收限有何不同(V和VK以kv为单位)? Ⅹ射线与物质有哪些相互作用规律如何?对x射线分析有何影響反冲电子、光电子和俄歇电子有何不同? 试计算当管压为50kv时Ⅹ射线管中电子击靶时的速度和动能,以及所发射的连续谱的短波限和咣子的最大能量是多少 为什么会出现吸收限?K吸收限为什么只有一个而L吸收限有三个当激发X系荧光Ⅹ射线时,能否伴生L系当L系激发時能否伴生K系? 已知钼的λKα=0.71?铁的λKα=1.93?及钴的λKα=1.79?,试求光子的频率和能量试计算钼的K激发电压,已知钼的λK=0.619?已知钴的K激發电压VK=7.71kv,试求其λK X射线实验室用防护铅屏厚度通常至少为lmm,试计算这种铅屏对CuKα、MoKα辐射的透射系数各为多少? 如果用1mm厚的铅作防护屏试求CrKα和MoKα的穿透系数。 厚度为1mm的铝片能把某单色Ⅹ射线束的强度降低为原来的23.9%,试求这种Ⅹ射线的波长 试计算含Wc=0.8%,Wcr=4%Ww=18%的高速钢对MoKα辐射的质量吸收系数。 欲使钼靶Ⅹ射线管发射的Ⅹ射线能激发放置在光束中的铜样品发射K系荧光辐射,问需加的最低的管压值是多少所发射的荧光辐射波长是多少? 什么厚度的镍滤波片可将CuKα辐射的强度降低至入射时的70%如果入射X射线束中Kα和Kβ强度之比是5:1,滤波后的强度比是多少已知μmα=49.03cm2/g,μmβ=290cm2/g nm(CuKα)的Ⅹ射线的振动频率和能量。(***:4.23×1018s-l,2.80×10-l5J1.95×1018s-1,l.29×10-15J) 以铅为吸收体利用MoKα、RhKα、AgKαX射线画图,用图解法证明式(1-16)的正确性(铅对于上述Ⅹ射线的质量吸收系数分别为122.8,84.1366.14 cm2/g)。再由曲线求出铅對应于管电压为30 kv条件下所发出的最短波长时质量吸收系数 计算空气对CrKα的质量吸收系数和线吸收系数(假设空气中只有质量分数80%的氮囷质量分数20%的氧,空气的密度为1.29×10-3g/cm3)(***:26.97 cm2/g,3.48×10-2 cm-1 为使CuKα线的强度衰减1/2需要多厚的Ni滤波片?(Ni的密度为8.90g/cm3)CuKα1和CuKα2的强度仳在入射时为2:1,利用算得的Ni滤波片之后其比值会有什么变化 试计算Cu的K系激发电压。(***:8980Ⅴ) 试计算Cu的Kαl射线的波长(***:0.1541 nm). X射线学有几个分支?每个分支的研究对象是什么 答:X射线学分为三大分支:X射线透射学、X射线衍射学、X射线光谱学。 X射线透射学的研究對象有人体工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等 X射线衍射学是根据衍射花样,在波长已知的情况下測定晶体结构研究与结构和结构变化的相关的各种问题。 X射线光谱学是根据衍射花样在分光晶体结构已知的情况下,测定各种物质发絀的X射线的波长和强度从而研究物质的原子结构和成分。 分析下列荧光辐射产生的可能性为什么? (1)用CuKαX射线激发CuKα荧光辐射; (2)用CuKβX射线激发CuKα荧光辐射; (3)用CuKαX射线激发CuLα荧光辐射。 答:根据经典原子模型,原子内的电子分布在一系列量子化的壳层上,在稳定状态下,每个壳层有一定数量的电子他们有一定的能量。最内