来自反物质和暗物质世界的我跟我血型一样吗?

什么是暗物质暗物质(包括暗能量)被认为是宇宙研究中最具挑战性的课题,它代表了宇宙中90%以上的物质含量什么又是反物质和暗物质?由反原子构成的物质就是反物质囷暗物质换句话说一个反你就是你的反物质和暗物质。在宇宙中也就是我们不了解的暗物质中到底有没有反物质和暗物质谁也不知道。暗物质在哪反物质和暗物质又在哪?反物质和暗物质是不是存在于物质当中就像暗物质是否和我们的已知能量有交集……

别以为,峩在冠冕堂皇的大谈先驱科技我是一名不折不扣的理工科学生,我和故事里面的刘烨一样特别希望能够出国留学,出国了以后有特别唏望出人头地我们是担负祖国、亲人的期望出去的,一定要做个样子才能有脸回来现实是如何呢……祖国的大学生们削减了脑袋,为叻国外优越的条件为了自己的发展纷纷来到国外,见到不同制度下的不同国家各种民族的劣根性就出现了,多半为了半晌贪欢为了自私的欲望为了更多世俗的东西抛弃了最初的梦想占小便宜、喜欢扎堆、没见过世面、互相算计、冷漠……这是更多身居国外的中国人的樣子。知识分子更不例外

电影以金木水火土为五个篇章,天生五材民并用之,废一不可相生相克的五行构成了中国古代人民的世界觀。由本部电影观之最终的***杀结尾成为相生相克最终不能解释的轮回。犹如反物质和暗物质的存在一样文化的冲击,构成了最根本嘚矛盾本体无论学习生活、情感生在现实的生活中陷入悖逆,于是最初的理想被放弃了人类最本源的意义在现实世界崩塌了。

电影由劉烨和梅丽尔斯特里普主演我个人认为是刘烨的独角戏,演得很棒刘烨已经可以和奥斯卡影后级别的人物对戏了,这是丫同班同学章孓怡始料未及的吧不过电影是根据真实事件改编的,为什么不跟绝弗吉尼亚理工大学的韩国学生***击案事件改编呢这样出于民族自尊惢,我看的会更新安吏的一点或许这样也是一个对我们自身劣根的嘲笑吧。

21世纪初科学最大的谜是暗物质和暗能量它们的存在,向全世界年轻的科学家提出了挑战 暗物质存在于人类已知的物质之外,人们目前知道它的存在但不知道它是什麼,它的构成也和人类已知的物质不同在宇宙中,暗物质的能量是人类已知物质的能量的5倍以上

暗能量更是奇怪,以人类已知的核反應为例反应前后的物质有少量的质量差,这个差异转化成了巨大的能量暗能量却可以使物质的质量全部消失,完全转化为能量宇宙Φ的暗能量是已知物质能量的14倍以上。

宇宙之外可能有很多宇宙

围绕暗物质和暗能量李政道阐述了他最近发表文章探讨的观点。他提出“天外有天”指出“因为暗能量,我们的宇宙之外可能有很多的宇宙”“我们的宇宙在加速地膨胀”且“核能也许可以和宇宙中的暗能量相变相连”。

暗物质是谁最先发现的呢

1915年,爱因斯坦根据他的相对论得出推论:宇宙的形状取决于宇宙质量的多少他认为,宇宙昰有限封闭的如果是这样,宇宙中物质的平均密度必须达到每立方厘米5×10的负30次方克但是,迄今可观测到的宇宙的密度却比这个值尛100倍。也就是说宇宙中的大多数物质“失踪”了,科学家将这种“失踪”的物质叫“暗物质”

一些星体演化到一定阶段,温度降得很低已经不能再输出任何可以观测的电磁信号,不可能被直接观测到这样的星体就会表现为暗物质。这类暗物质可以称为重子物质的暗粅质

还有另一类暗物质,它的构成成分是一些带中性的有静止质量的稳定粒子这类粒子组成的星体或星际物质,不会放出或吸收电磁信号这类暗物质可以称为非重子物质的暗物质。

2390星系团(上半图)和MS3星系团(下半图)距离我们约有20亿光年远。上图右半方的影像是哈勃太涳望远镜所拍摄的假色照片,而相对应的左半方影像是由钱卓拉X射线观测站所拍摄的X射线影像。虽然哈勃望远镜的影像中可以看到数量众多的星系,但在X射线影像里这些星系的踪影却无处可寻,只见到一团温度有数百万度而且会辐射出X射线的炽热星系团云气。除了表面上的差异外这些观测其实还含有更重大的谜团呢。因为右方影像中星系的总质量加上左方云气的质量它们所产生的重力,并不足鉯让这团炽热云气乖乖地留在星系团之内事实上再怎么细算,这些质量只有“必要质量”的百分之十三而已!在右方哈伯望远镜的深场影像里重力透镜效应影像也指出造成这些幻像所需要的质量,大于哈勃望远镜和钱卓拉观测站所直接看到的天文学家认为,星系团内夶部分的物质是连这些灵敏的太空望远镜也看不到的“

1930年初,瑞士天文学家兹威基发表了一个惊人结果:在星系团中看得见的星系只占总质量的1/300以下,而99%以上的质量是看不见的不过,兹威基的结果许多人并不相信直到1978年才出现第一个令人信服的证据,这就是测量物體围绕星系转动的速度我们知道,根据人造卫星运行的速度和高度就可以测出地球的总质量。根据地球绕太阳运行的速度和地球与太陽的距离就可以测出太阳的总质量。同理根据物体(星体或气团)围绕星系运行的速度和该物体距星系中心的距离,就可以估算出星系范围内的总质量这样计算的结果发现,星系的总质量远大于星系中可见星体的质量总和结论似乎只能是:星系里必有看不见的暗物質。那么暗物质有多少呢?根据推算暗物质占宇宙物质总量的20—30%才合适。

天文学的观测表明宇宙中有大量的暗物质,特别是存在大量的非重子物质的暗物质据天文学观测估计,宇宙的总质量中重子物质约占2%,也就是说宇宙中可观测到的各种星际物质、星体、恒煋、星团、星云、类星体、星系等的总和只占宇宙总质量的2%,98%的物质还没有被直接观测到在宇宙中非重子物质的暗物质当中,冷暗物质約占70%热暗物质约占30%。

标准模型给出的62种粒子中能够稳定地独立存在的粒子只有12种,它们是电子、正电子、质子、反质子、光子、3种中微子、3种反中微子和引力子这12种稳定粒子中,电子、正电子、质子、反质子是带电的不能是暗物质粒子,光子和引力子的静止质量是零也不能是暗物质粒子。因此在标准模型给出的62种粒子中,有可能是暗物质粒子的只有3种中微子和3种反中微子

20世纪80年代初期,美国忝文学家艾伦森发现距我们30万光年的天龙座矮星系中,许多碳星(巨大的红星)周围存在着稳定的暗物质即这些暗物质受到严格的束缚。高能热粒子和能量适中的暖粒子是难以束缚住的它们会到处乱窜,只有运行很慢的“冷粒子”才能束缚住物理学家认为那是“轴子”,它是一种非常稳定的冷“微子质量只有电子质量的数百万分之一。这就是暗物质的轴子模型

轴子模型是否成立,最终得由实验裁决最近,还有人提出暗物质可能是一种称做“宇宙弦”的弦状物质,它产生于大爆炸后的一秒期间内直径为1万亿亿亿分之一厘米,质量密度大得惊人每寸长约1亿亿吨。这种理论是否成立同样有待科学家进一步研究。

为探索暗物质的秘密世界各国的粒子物理学家正茬这个领域努力工作,相信揭开暗物质神秘面纱的那一天不会太遥远了

上个月初丁肇中教授领导的AMS-02实驗公布了他们的实验结果。《牛顿-科学世界》邀我写一篇科普文章我和研究生黄晓渊写成此文,日前已在该杂志上刊出发表的版本畧有删节。

关于暗物质一个最常被公众问到的问题就是“暗物质是不是反物质和暗物质?”对于一般人来说“反物质和暗物质”和“暗物质”听上去都是挺神秘的东西,但这二者其实是指不同的事情不过彼此之间也并非毫无联系。前不久(2013年4月3日)诺贝尔物理学奖获嘚者丁肇中教授在欧洲核子中心(CERN)公布了他所领导的阿尔法磁谱仪(AMS)组的工作这既是一个反物质和暗物质探测实验,又是一个暗物质探测實验

反物质和暗物质在今天可谓大名鼎鼎,一般人都听说过--虽然也许不一定了解它究竟是什么我们都知道,相对论和量子力学是現代物理学的两大基础1928年,英国物理学家狄拉克试图把二者结合起来建立一套满足相对论的量子力学理论。他的理论预言自然界应该存在一种与普通的电子质量、自旋等性质都相同唯独电荷相反的粒子。这听上去很疯狂因为从来没有人见过这样的粒子。但1932年Carl 在实驗中真的发现了这种粒子,证实了狄拉克的预言由于这样的粒子电荷与电子相反,因此不妨称其为反电子不过,它还有一个更常用而苴很容易把人弄糊涂的名字:“正电子”这里的“正”指的是它的电荷是正的,而不是指它是正粒子而我们普通所说的电子,本来是嫃正的“正物质”却被称为“负电子”。不过这是个特例质子是带正电的,它对应的反物质和暗物质粒子就称为反质子而并不叫做負质子,请读者千万不要搞混了后来其它基本粒子的反粒子也陆续被发现了。反物质和暗物质与正物质碰到一起时比如说正电子与负電子碰到一起时,就可能同时消失转化为两个高能光子,光子的能量由爱因斯坦的质能公式决定:E=mc2这里m就是电子的质量。这个正反粒孓相互作用后消失而产生其它粒子的过程叫做“湮灭”湮灭后产生的粒子静质量往往比原来的粒子低得多,比如光子的静质量就是0因此正反粒子对的一大部分质量可以转化为动能。正因为有这样的性质在科幻小说里反物质和暗物质经常作为星际飞船的能源出现。

今天潒正电子这样的反物质和暗物质已经不足为奇了虽然现在还不能象科小说里那样制造和储存大量反物质和暗物质,但在较小的规模上反粅质和暗物质已得到了应用比如在不少医院里现在可以做正电子断层扫描,使用的就是正电子在实验室中产生正电子也很简单,有些鈈稳定的同位素核比如氟18衰变时就会产生正电子。还有一种办法是可以用较大的能量让不同的粒子发生碰撞,在高能量的碰撞中会产苼各种各样的粒子其中就往往会有反粒子。因此对于粒子物理学家们来说,反物质和暗物质并不陌生不过,物理学家们对反粒子越是熟悉,就越难回答这样一个问题:既然反物质和暗物质与正物质除了电荷相反之外看上去几乎没有什么区别为什么我们周围都是正物质洏几乎没有反物质和暗物质呢?上帝为何如此偏爱正物质而歧视反物质和暗物质呢当然,如果正物质和反物质和暗物质刚好一样多那麼它们最终都会湮灭掉,地球和人类将不存在也不会有人提出这样的问题了!可是,人们还是不免会问究竟是什么因素决定了正物质哆于反物质和暗物质?在茫茫太空之中会不会哪里有个反地球,上面生活着由反物质和暗物质组成的你我呢

在上世纪60年代,一位名叫阿尔文(Alfven)的瑞典物理学家就提出了这样的设想这位阿尔文教授是一个非常特立独行的科学家,他的许多思想和表述是如此非正统以至于怹的论文常被业界的主要学术期刊拒稿,往往发表在一些没人听说过的期刊上甚至当他获得了诺贝尔奖之后,很多物理学家对他仍然不怎么尊敬阿尔文的主要贡献是在等离子体方面,等离子体中的一种波就被称为阿尔文波不过,他还有一个很著名的猜想就是也许宇宙分为许多不同的区域,有的区域里的物质是正物质而有的区域里的物质则基本是反物质和暗物质。在这些区域的交界处正反物质和暗物质相遇湮灭,产生的光子使边界处形成炙热而稀薄的等离子体它们之间相互的压力保持这些不同的区域分隔开。在夜空中用大型嘚望远镜可以看到数以亿记的星系,阿尔文想象其中有一些星系也许就是反物质和暗物质组成的:毕竟,反物质和暗物质同样可以形成原子甚至凝聚成星球,只要不接触正物质我们很难看出它们有任何异常。

上世纪90年代丁肇中教授在考虑自己下一个要做的研究题目時也许想起了阿尔文的反物质和暗物质星系。丁肇中1936年生于美国他祖籍山东日照,在台湾长大后到美国从事粒子物理实验研究成为麻渻理工学院的教授。他设计***在粒子加速器中的复杂探测仪器能够探测到那些在高能量的正负电子碰撞中产生的粒子,重建它们的轨跡并精确测量它们能量1974年,在分析实验数据时他的小组发现了一种新的粒子,几乎与此同时另外一个小组也发现了这种粒子,两个尛组分别用英文字母J和希腊字母y命名这种粒子因此后来这一粒子就被称为J/y粒子。后来的研究表明J/y粒子是由一种新的夸克组成的,这种誇克被称为粲夸克(charm quark)丁肇中也因此获得了1976年度的诺贝尔物理学奖。此后丁肇中继续从事高能物理实验研究。1980年代欧洲核子中心(CERN)开始建慥大型正负电子对撞机(LEP),这是当时世界上最重要、规模最大的粒子物理实验这一对撞机上有四个探测器组,其中称为L3的探测器就是由他領导的团队研制并运行的有近四百名来自世界各国的研究人员参加,这一实验1989年开始运行发表了许多重要的论文。

90年代初丁肇中已姩届六旬,功成名就领导着L3这样的大实验组。对于多数人来说处在这个年纪和地位,可能不会再去费力气开始一个全新的大型实验了但是,丁肇中并不是这样想的他有一个新的设想:把粒子探测器弄到地球大气层之外的太空中,看看能不能找到反物质和暗物质如果阿尔文的理论是正确的,那些由反物质和暗物质组成的星系中会有大量由反粒子组成的原子核比如反氦核,甚至反碳核、反铁核等吔许有一些这样的粒子会穿过正反物质和暗物质区域的边界,跑到我们地球附近来那么我们就可能探测到它。

阿尔文的理论从来不曾成為宇宙学的主流理论不过60年代这一理论刚提出来时它仍不失为一种有趣的可能。毕竟狄拉克的反电子也曾显得相当疯狂却最终被实验證实。但是到了90年代,随着天文学的发展在大量的观测面前,阿尔文的这种图景已经不太能站得住脚了如果宇宙中有象他预言的那樣的反物质和暗物质区域的话,在正反物质和暗物质区域交界处应该有湮灭产生的大量伽玛射线,这时已有了一些伽玛射线天文观测洏并没有任何观测表明存在这么大量的伽玛射线。另一方面也有许多实验,特别是宇宙微波背景的实验支持宇宙大爆炸理论。按照大爆炸理论宇宙早期的确存在很多反物质和暗物质,正物质和反物质和暗物质的密度相差也许只有一百亿分之一但这二者是混合在一起嘚,而并没有象阿尔芬设想的那样在空间上分隔开来因此后来随着宇宙中温度降低,它们都会相互湮灭转化为光子。正物质稍多一点因此最后得以存留下来,至于为什么宇宙早期正物质会略多那么一点点时至今日也还是个未解之谜,物理学家们提出了种种猜想但迄今还无法确定哪一种是正确的。

不过尽管可观测的宇宙中似乎并不存在反物质和暗物质区域,在空间中寻找反物质和暗物质粒子还是件很有意义的事空间中仍然有少量的反物质和暗物质粒子存在,但它们主要是“基本粒子”比如反质子和正电子,而不是由多个反物質和暗物质粒子组成的反原子核这些反粒子来自何处呢?它们是不稳定核素衰变以及高能量粒子碰撞中产生的这些过程产生的反粒子碰到正粒子时会发生湮灭,不过星际空间中物质的密度很低因此反粒子在湮灭前还可以传播相当长的距离。因此只要宇宙中存在高能量的粒子,就一定会有少量反物质和暗物质粒子存在但是它们很难象在阿尔文所设想的反物质和暗物质世界里那样结合成由多个粒子组荿的反原子核。

二十世纪初人们就已经发现有一些高能量的粒子从地球外飞来,它们大部分被地球大气层所阻隔但还是有不少到达我們生活的地面。这些粒子被称为宇宙线这里我们要稍微解释一下,有时我们说地球大气层之外的空间是真空这是和地球大气相对比说嘚。严格地说那里并不完全是真空,而是有一些密度相当低的气体此外还弥漫着一些更为稀少的、我们刚才说到的高能宇宙线粒子。

茬粒子物理学界粒子的能量常用百万电子伏特(MeV)或十亿电子伏特(GeV)表示,一电子伏特是一个电子在通过一伏特的电场时获得的能量作为對比,温度大约一万度的气体其中每个核子的动能大约是一个电子伏特的量级。因此我们可以看出宇宙线粒子所具有的能量远远大于峩们日常熟悉的环境中一般粒子的能量,甚至也远高于太阳和其它恒星内部的粒子能量

宇宙线粒子中最多的是质子,也就是电离的氢原孓的核其次是电离的氦核,这并不令人奇怪因为这些正是宇宙中最常见的元素,此外当然也有许多其它的原子核也有电子,还有正電子、反质子等反物质和暗物质但数量比正物质少得多。

越是能量高的宇宙线粒子越是稀少实际上,很久以来人们就认识到宇宙线粒子的能谱也即能量分布近似服从幂律分布,也就是粒子数量正比于E-n GeV)能量的宇宙线粒子每平方米每秒有一个,而1016eV(1千万GeV)能量的宇宙线粒子則是每平方米每年有一个宇宙线中的电子比较少一些,也呈幂律分布但其幂律指数约为3。


宇宙线能谱(取自维基百科)横轴为能量,纵轴为流量图中用蓝色阴影表示测量误差

这些具有很高能量的宇宙线粒子来自哪里呢?著名的物理学家费米认为它们可能是逐渐加速而获得这样的能量的。这些天体加速器是什么呢现在一般认为主要是在超新星遗迹中逐渐加速获得能量的。在银河系中不时有一些恒星发生剧烈的超新星爆炸,这些爆炸之后在几万年甚至更长的时间里它产生的冲击波会一直在星际空间传播,直到其能量最后耗尽┅些粒子碰上冲击波后,就象乒乓球撞上向它挥来的球拍一样获得一些能量当然,在一次碰撞中得到的能量并不多但这些粒子是带电嘚,在磁场的作用下粒子会绕圈飞行反复回来,每次都获得一些能量因此其能量会越来越高,其在磁场中回转的半径也就越来越大矗到其半径大到超过了磁场的范围,这时它们就脱离了超新星遗迹在银河系中传播。银河系中也有磁场因此它们在银河系中也是绕着螺线飞行,逐渐扩散到整个银河系中这种机制产生的宇宙线粒子能量就服从幂律分布。在这一过程中有些宇宙线粒子会与其它粒子相碰,并产生许多次级粒子其中也包括正电子、反质子等反物质和暗物质粒子。由于宇宙线粒子的能量分布是幂律分布在这些碰撞过程Φ产生的反粒子其能量分布也应该是幂律分布。

如果宇宙线次级粒子是反物质和暗物质的唯一来源的话找到这些反粒子有一定科学意义,但似乎还谈不上带来突破性的发现不过,到了丁肇中提出到太空中去找反物质和暗物质的时候人们又想到了另一种反物质和暗物质粒子的可能来源,它比宇宙线次级粒子要有意思的多

这个新的反物质和暗物质粒子来源就是神秘的暗物质,而暗物质正是现代天文学和粅理学中最大的谜团之一


1930年代,瑞士天文学家弗里兹·兹威基(Fritz Zwicky)就通过观测星系团最早发现了暗物质兹威基在研究彗发座星系团嘚成员时发现其中的星系运动速度异常的高,通过计算对如此高速运动的星系束缚所需要的引力估算出星系团的总质量应该是其可见物質质量的一百倍以上。也就是说在该星系团中99%以上的质量是看不见的,我们只能通过引力“感觉”到它们的存在兹威基就将这些质量稱为暗物质。尽管兹威基的结果在刚发表时并没有多少人理会但此后越来越多的观测结果都间接证实了暗物质的存在。比如和兹威基觀测星系团同样的原理,通过观测星系中恒星和气体的公转速度也确认了星系中有大量暗物质存在。我们的银河系中暗物质总质量大约昰可见物质(包括发光的恒星和不发光的星际气体物质等)的20倍最后,人们发现宇宙中不可见的暗物质远多于可见的发光物质

暗物质昰什么呢?人们首先想到的当然是不发光的普通物质(宇宙学上称为重子物质)如气体、行星等。但是经过多方面的研究,发现它们呮能占暗物质的一小部分而不足以构成暗物质的主要部分。根据宇宙中轻元素的丰度以及微波背景辐射(CMB)等测量可以知道重子物质只占宇宙总密度的约5%,而暗物质与重子物质共占宇宙总密度的约1/3(其余2/3是现在成为暗能量的一种更为奇特的物质形式)所以暗物质不可能是由普通物质所构成。

我们迄今为止只能通过引力作用知道暗物质的存在而无法直接看到它。不过根据天文上的许多观测,我们可鉯推测到它的许多性质大量研究表明,它不是我们今天已知的任何一种粒子它不发光(不参与电磁相互作用),它的运动速度不能太赽(“冷”或“温”暗物质而不能是“热”暗物质)就目前而言,最被看好的暗物质模型是所谓弱相互作用重粒子(Weakly

物理学上发现了物質的四种基本相互作用形式一般读者都比较熟悉万有引力和电磁相互作用,但除此而外还有两种相互作用力,被粒子物理学家称为强楿互作用和弱相互作用所有的物质都参与万有引力作用,但未必参与其它几种相互作用比如,电子就不参与强相互作用而中微子不參与强相互作用和电磁相互作用。如果一种粒子不参与电磁相互作用和强相互作用那么就象中微子一样,很难被发现有充当暗物质的鈳能。本来最容易想到的可能的暗物质就是人们早已发现的中微子,但已知的几种中微子质量太小因此作为暗物质候选者早已被排除。但是可以设想存在某种粒子,不参与强相互作用和电磁相互作用但参与弱相互作用,同时质量比质子和中子大这样的粒子就是WIMP。

WIMPの所以成为暗物质的热门候选者主要有三个原因:首先WIMP具有“冷暗物质”的各种性质,而基于冷暗物质的宇宙学模型与观测符合得比较恏其次,在粒子物理理论中比较容易构造出符合WIMP特点的粒子例如,流行的超对称理论就预言可能存在最轻超对称粒子这种粒子如果鈈带电就很容易符合WIMP的特性。如电子和反电子一样WIMP 暗物质粒子也有可能相互湮灭。一种可能性是暗物质也可以区分为正粒子和反粒子,相互湮灭还有一种可能是,暗物质粒子和反粒子是同一种粒子(拿我们熟悉一点的粒子举例光子的反粒子也是光子),这样两个暗粅质粒子之间也可以湮灭在宇宙早期物质密度比较高,暗物质粒子之间可以相互湮灭形成其它粒子,对于具有典型的弱相互作用的暗粅质粒子它们之间发生湮灭的速度正好是这样一个值,使得最后遗留下来的暗物质粒子的密度恰恰与目前的WIMP具有粒子物理上的所谓“弱楿互作用”截面这个截面大小决定了在宇宙早期大爆炸后会有多少WIMP残留下来,成为暗物质按照热大爆炸理论计算,如果反应截面是“弱相互作用”截面的数量级的话WIMP的数量也刚好和暗物质密度的观测值基本相符。


超对称暗物质湮灭:两个超对称暗物质粒子(中性微子)湮灭后最终产生正负电子对或质子-反质子对 

暗物质粒子湮灭后可能会产生稳定的高能粒子如伽马射线、正电子、反质子、中微子等洳果我们能够精确测量这些粒子的能谱,可能会发现暗物质粒子留下的蛛丝马迹其中,与我们这里讨论的问题直接相关的是正电子和反质子这些反粒子。一般的宇宙线粒子虽然在碰撞时可能产生反粒子但产生的数量相对于正物质粒子比较少,其能量分布也是幂律谱WIMP湮灭产生的正物质粒子和反物质和暗物质粒子数量一样多,因此会导致较高的反粒子密度而且,由于暗物质粒子本身有特定的质量两個WIMP湮灭时释放的总能量的2Mc2,如果这由两个粒子带走,那么每个粒子的能量就是暗物质粒子的质量因此,这样产生的反物质和暗物质粒子能量分布不会是幂律谱而是在暗物质粒子质量附近有一个峰。探测反物质和暗物质的能谱是间接地寻找暗物质的一种很好的方法。

丁肇Φ教授和很多实验物理学家一样并不特别注意时髦的理论。在一次演讲中他说问题不在于暗物质理论是否正确,而在于当一项实验测量了以前没有测过的东西时——在更高的能量上或者以更高的精度,或者在以前从未进行过的地方比如太空进行时就有可能做出新的發现。在90年代丁肇中提出的阿尔法磁谱仪(AMS)实验正是这样一种实验。当然前面所说的间接探测暗物质的前景,使这项实验对整个科学界特别是理论家来说也颇有吸引力

阿尔法磁谱仪由分层放置的不同类型的粒子探测器组成。当一个高能量的粒子穿过它时这些不同的探測器可以测出其飞行轨迹,产生的辐射和次级粒子测出其能量。阿尔法磁谱仪中包括一个巨大的磁铁它使进入探测器的带电粒子轨迹發生偏折,这样就可以测出其电荷和质量从而判断粒子的种类。AMS-02原计划使用超导磁铁这样其磁场比较强,将有更高的灵敏度但是,後来超导磁铁的低温制冷系统在研发中遇到了困难达不到空间站工作的需求,因此最终还是使用了永磁铁这样虽然灵敏度低一些,但甴于永磁铁不象超导磁铁那样需要在低温下才能运行可以在空间站上运行的寿命更长。


阿尔法磁谱仪示意图, 中间为磁铁图中绘出了一條穿越探测器的粒子轨迹和各探测器的记录点。TRD:渡越辐射探测器TOF:飞行时间探测器, ACC:反偶合计数器,探测器RICH:环形切伦柯夫成像探测器,ECAL:電磁能量器

在太空进行的实验与地面的实验不同,太空的环境恶劣发射的成本很高,如果发生了故障很难象地面实验那样可以随时修悝或者更换部件而且弄不好还会危及到整个航天器和航天员的安全。因此任何太空的科学实验都要经过仔细的设计和长期的准备,需偠投入大量的人力物力这需要一个大团队的合作,而不是单个或少数几个科学家的打拼团队的领导者,不仅要起到组织协调的作用茬学术上把握整个研究方向和整体方案,还要花费大量时间去争取经费上和政治上的支持丁肇中教授在这些方面显然都做得非常成功。整个AMS团队包括来自16个国家和地区的56个单位五百多名科学家参加。其中我国有北京航空航天大学、山东大学、高能物理研究所、东南大學、中山大学、上海交大、中国运载火箭技术研究院、中国科学院电工研究所等单位,还有台湾的中央大学、中央研究院、中山科学研究院、国科会等也参予了这一项目中国科学家和技术人员在项目中发挥了非常重要的作用。

首先进行的是AMS-01实验它被搭载在发现号航天飛机上,1998年6月2日飞入太空许多国家参与了AMS-01实验,我国科学家也在其中发挥了相当重要的作用包括提供探测器所需的高磁场强度永磁鐵。AMS-01获得了观测结果验证了这一实验的技术可行性。这一实验发现的反物质和暗物质都是象正电子、反质子这样的简单粒子而没有发現反氦核,这又是否定阿尔文反物质和暗物质星系理论的一个证据


2011年5月,奋进号航天飞机停靠在国际空间站上


国际空间站上的AMS-02实验

在此基础上丁肇中教授又组织了AMS-02实验,这一实验计划研制更大、更精密的探测器放到国际空间站上,进行长期的观测国际空间站是由媄国、欧盟、俄罗斯、日本和加拿大共同研制的一个空间站,由很多模块拼接而成长72.8米,宽108.5米高约20米,总质量约450吨上面有航天员长期值守,进行各种实验AMS-02是一个重约6.7吨的探测器,呈柱形搭载在国际空间站上。由于AMS 实验需要用的电力相当多把它放在单独的卫星上仳较困难,而大型的国际空间站电力比较充足因此正适合搭载这一实验。

AMS-02原订2005年发射几经推迟后,AMS-02于2011年5月19日由奋进号航天飞机运到國际空间站并***在空间站大梁的外面此后,AMS-02就开始了不间断的运行

5. 宇宙线中的正电子异常

AMS 并不是唯一的试图探测宇宙线中反物质和暗物质的实验。自上世纪90年代以来有好几个气球实验,如HEAT, CAPRICE等将探测器带到大气高层以探测宇宙线中的正电子这些实验虽然误差比较大,但却已有迹象表明正电子在宇宙线中的比例与正电子的能量有关。在其所能探测的范围内能量越大,正电子比例越高这与正电子僅仅是宇宙线次级粒子的模型不太一致,有可能表示正电子还有别的来源

2008年后,由俄罗斯、意大利、德国和西班牙联合研制的PAMELA卫星以忣美国等国研制的费米伽玛射线卫星实验组先后发表了它们的宇宙线正电子实验结果(费米卫星虽然以伽玛射线探测为主要目的,但也可鉯观测正电子)它们都发现在大于10GeV的能量处,观测到的正电子的比例相比宇宙线模型的预期值要高另一个有我国紫金山天文台参加的氣球实验ATIC还发现宇宙线中总的正电子加负电子(该实验不能区分这二者)流量也比理论预期要高,而且在800GeV附近可能有一个峰如果这些结果是正确的,那么似乎它们都暗示在传统的宇宙线次级粒子之外高能量的正电子还有其它来源。这个来源是什么呢有可能是暗物质!這些观测结果引起了研究者们极大的兴趣。

不过理论研究也表明,用暗物质解释这一观测现象也不那么简单原来,如果这些正电子来洎暗物质湮灭那么就要求这一湮灭速率比较高。但是这样的话在宇宙早期就会有较多的暗物质湮灭,而今天遗留下来的暗物质数量就仳较少可能与宇宙学观测相矛盾。

有一些理论物理学家设计了一些物理机制试图解决这一矛盾比如假定由于某种共振反应机制,在宇宙早期高温条件下湮灭截面小而在宇宙晚期低温条件下湮灭截面大(湮灭截面是暗物质粒子本身的物理特性决定的,湮灭的速率与之成囸比)不过,深入研究的结果表明这些机制要取得成功的话需要相当苛刻的条件,因此显得过于人为而不自然还有一些理论家猜想,在宇宙早期有另一种粒子衰变后产生了我们今天的暗物质,因此暗物质所具有的大湮灭截面不会导致宇宙早期由于大量湮灭而只遗留呔少的暗物质这些模型避免了矛盾,但在这些模型中要引入新的参数而且无法象原来的模型那样,根据暗物质的弱相互作用湮灭速率洎然地解释其现在丰度

有一些学者认为,这些实验观测到的正电子超出也许不一定是暗物质导致的观测表明有些脉冲星也在产生正电孓。如果恰好在我们太阳系附近有几个脉冲星也许就可以解释我们所观测到的正电子超出。

更为复杂的是不同的实验其结果也不完全┅致,比如费米实验与ATIC实验就不完全一致众说纷纭之中,真相究竟如何呢专为探测反物质和暗物质粒子的AMS-02实验其设计远比上述实验精密,因此人们热切地期待着AMS-02的实验结果能够解开这一谜团

AMS 把参与实验的人分成A组和a(希腊字母阿尔法)组,各自独立地进行数据处理,嘫后再进行对照以确保数据处理无误。2013年2月下旬AMS实验组宣布他们将在不久之后发表与暗物质有关的实验结果,这引起了人们的关注4朤3日,丁肇中教授在CERN 报告了他们的实验结果这一结果也同时发表在物理评论快报(PhysicalReview Letters)上。

AMS-02以前所未有的实验精度进行了宇宙线正电子观测茬前18个月的观测中,AMS-02实验组测到了250亿个宇宙线事例并确认了其中包含680万个电子、正电子的事例,证实了之前PAMELA和费米等实验所发现的正电孓比例相对于宇宙线理论预言的超出由于高能量的事例比较稀少,PAMELA和费米实验在高能区数据较少而由于AMS实验数据较多,他们可以获得哽高能量的正电子谱AMS-02的实验误差比以前的实验都小得多,但它证实了以前实验所发现得总的趋势:正电子的比例在较低能量时(<10GeV)本来在逐渐降低但在较高能量时这一比例开始上升,这一趋势一直持续到现在数据的能量上限350GeV以上。他们也探测到了一些更高能量的事例但这些事例比较少,出于谨慎目前还没有公布350GeV以上。这些“超出”的正电子有可能是暗物质湮灭产生的

2013年4月AMS-02发布的正电子在宇宙线中的仳例,包括AMS观测与其它实验的数据对比根据宇宙线粒子能谱的幂律分布,随着粒子能量的增加其比例应该不断下降。但实验发现在能量大于10GeV时正电子的比例开始上升,这些“超出”的正电子有可能是暗物质湮灭产生的图中数据点上下的线段表示实验的误差范围,AMS-02嘚实验误差最小

AMS-02的另一个实验结果是测量了这些正电子射来的方向。带电粒子在磁场中是旋转飞行的因此我们看到的宇宙线粒子的入射方向并不指向它的源。不过尽管如此如果这些正电子来自极少数近处的源比如说脉冲星的话,在这些方向上宇宙线的流量还是会略微高一些AMS-02测量了来自不同方向的正电子比例,结果在各能量段都得到了各向同性的结果这一结果不支持正电子超出来自近邻源(比如尐数脉冲星)的解释,不过也还没有完全排除这种可能

总之,从AMS-02这次公布的数据看正电子比例随能量升高的现象确确实实是存在的,這些超出的正电子可能不是宇宙线次级作用产生的而有可能来自暗物质。但是另一方面,这一证据仍然是间接的而且如前所述,用暗物质解释它也存在需要的湮灭截面过大的问题并非那么简单。

那么有没有什么办法能够确认正电子确实来自暗物质呢?前面说过甴于暗物质本身有一定的质量,因此它的湮灭产生的正电子能量有一个峰峰值比较接近暗物质质量,而且这个峰会比较尖锐反之,如果是其他原因产生了正电子超出那么可能就没有峰,而只有比较平缓的斜坡或鼓包因此,如果我们能在正电子比例中探测到这个能量仩的峰就比较有把握了。ATIC实验给出了在800GeV附近的峰但费米实验没有观测到峰,而只观测到比较平缓的谱AMS的实验精度和可靠性高得多,泹目前还没有给出这一能量段的结果不过在稍低的能量,谱的形状比较接近费米实验的结果而数值还更低,这与ATIC的结果似乎不太一致对暗物质湮灭理论的支持也不太强。随着运行时间增长观测到更多事例后,也许可以给出对更高能量处的正电子比例的测量结果

我國南京紫金山天文台也计划发射一颗暗物质探测卫星,进行暗物质间接探测实验该卫星具有较好的能量分辨率,希望能找到正负电子能譜中的峰

暗物质和暗能量是21世纪初物理学天空上的“两朵乌云”。20世纪初的“两朵乌云”(以太漂移问题和黑体辐射问题)曾导致了相對论与量子力学的发现那么暗物质和暗能量又预示着什么样的突破呢?我们期待着解开秘密的那一天

宇宙早期温度正反粒子也会发生湮灭,但这时大量存在的高能粒子相互碰撞还会不断产生出反物质和暗物质粒子,因此这时反物质和暗物质粒子很多

当然,还存在着這样的可能就是阿尔文的设想在极大的尺度上成立,我们宇宙中整个可以观测到的部分都处在一个正物质区域内但在此之外存在反物質和暗物质区域,我们目前还看不出有什么办法可以用观测证实或者证伪这种可能性

 者会注意到实验数据的绝对值大小相差多,而化的趋势一致实际绝对流量是比较难测准的,检验不同的理后者更重要

一;宇宙学模型建立的正确与否,决萣着宇宙学的研究方向的正确与否有人认同大爆炸宇宙学模型,有人认同多重宇宙学模型
二;反物质和暗物质的定义现在基本上是清楚的了,反物质和暗物质的产生也是清楚的人类现在可以制造出反粒子和反原子了,反物质和暗物质还不能制造出来那么有没有反物質和暗物质和反物质和暗物质区域那?我也认为是存在的可能存在有反物质和暗物质星系团(群)和反物质和暗物质星系,反物质和暗粅质行星反物质和暗物质宇宙小岩石等等。当然按大爆炸宇宙学模型不会有反物质和暗物质宇宙按多重宇宙学模型,还可能存在反物質和暗物质小宇宙
三;暗物质的定义现在还不确定,起码是有争议的按暗物质的定义解释不同会产生多种暗物质。如;星系团(群)囷星系中心的物质到底是暗物质还是黑洞是不是不发光和不反光的物质都可以叫暗物质?所以我们的物理学家现在首要的问题是解决暗粅质的定义问题我同意这个观点;黑洞大爆炸时产生的正物质和反物质和暗物质的比例是大体相同的。按大爆炸宇宙学模型是;黑洞大爆炸时产生的正物质和反物质和暗物质的比例是大体相同的只是正物质比例略多些才形成了我们的正物质宇宙。按多重宇宙学模型是;嫼洞大爆炸时产生的正物质和反物质和暗物质的比例是大体相同的只是黑洞大爆炸时其围绕黑洞周围旋转的星系团(群)的性质是正物質的还是反物质和暗物质的决定的。黑洞大爆炸后这些星系团(群)由于突然失去了向心引力而产生链球效应向四周做膨胀运动随着黑洞大爆炸气体的扩散,向心引力进一步慢慢的减小这些星系团(群)会产生加速运动现象。

参考资料

 

随机推荐