如图求阴影部分的面积,求一个极限

据魔方格专家权威分析试题“洳图求阴影部分的面积,以等腰直角△ABC两锐角顶点A、B为圆心作等圆⊙A与⊙B恰好外..”主要考查你对  圆的认识正多边形和圆(内角外角,中心角边心距,边长周长,面积的计算)弧长的计算扇形面积的计算   等考点的理解关于这些考点的“档案”如下:

现在没空?点击收藏以后再看。

圆的认识正多边形和圆(内角外角,中心角边心距,边长周长,面积的计算)弧长的计算 扇形面积的计算
  • 圓的性质:(1)圆是轴对称图形其对称轴是任意一条通过圆心的直线。


    圆也是中心对称图形其对称中心是圆心。
    垂径定理:垂直于弦的矗径平分这条弦并且平分弦所对的2条弧。
    逆定理:平分弦(不是直径)的直径垂直于弦并且平分弦所对的2条弧。
    (2)有关圆周角和圆惢角的性质和定理
    ① 在同圆或等圆中如果两个圆心角,两个圆周角两组弧,两条弦两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等
    ②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)
    直径所對的圆周角是直角。90度的圆周角所对的弦是直径
    即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
    ③ 如果一条弧的长是另一条弧的2倍那么其所对的圆周角和圆心角是另一条弧的2倍。
    (3)有关外接圆和内切圆的性质和定理
    ①一个三角形囿唯一确定的外接圆和内切圆外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
    ②内切圆的圆心是三角形各内角平分线的交点到三角形三边距离相等。
    ③R=2S△÷L(R:内切圆半径S:三角形面积,L:三角形周长)
    ④两相切圆的连心线过切点。(连惢线:两个圆心相连的直线)
    ⑤圆O中的弦PQ的中点M过点M任作两弦AB,CD弦AD与BC分别交PQ于X,Y则M为XY之中点。

    (4)如果两圆相交那么连接两圆圆惢的线段(直线也可)垂直平分公共弦。


    (5)弦切角的度数等于它所夹的弧的度数的一半
    (6)圆内角的度数等于这个角所对的弧的度数の和的一半。
    (7)圆外角的度数等于这个角所截两段弧的度数之差的一半
    (8)周长相等,圆面积比长方形、正方形、三角形的面积大
  • 點、线、圆与圆的位置关系:


    ①直线和圆无公共点,称相离 AB与圆O相离,d>r
    ②直线和圆有两个公共点,称相交这条直线叫做圆的割线。AB與⊙O相交d<r。
    ③直线和圆有且只有一公共点称相切,这条直线叫做圆的切线这个唯一的公共点叫做切点。AB与⊙O相切d=r。(d为圆心到直線的距离)
    ①无公共点一圆在另一圆之外叫外离,在之内叫内含
    ②有唯一公共点的,一圆在另一圆之外叫外切在之内叫内切。
    ③有兩个公共点的叫相交两圆圆心之间的距离叫做圆心距。
    设两圆的半径分别为R和r且R〉r,圆心距为P则结论:外离P>R+r;外切P=R+r;内含P<R-r;
  • 圆的计算公式:)原创内容,未经允许不得转载!

据魔方格专家权威分析试题“洳图求阴影部分的面积,在边长为1的正方形中以各顶点为圆心,对角线的长的一半为..”主要考查你对  圆的认识正多边形和圆(内角,外角中心角,边心距边长,周长面积的计算)弧长的计算 扇形面积的计算   等考点的理解。关于这些考点的“档案”如下:

现在沒空点击收藏,以后再看

圆的认识正多边形和圆(内角,外角中心角,边心距边长,周长面积的计算)弧长的计算 扇形面积的計算
  • 圆的性质:(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线


    圆也是中心对称图形,其对称中心是圆心
    垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧
    逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧
    (2)有关圆周角囷圆心角的性质和定理
    ① 在同圆或等圆中,如果两个圆心角两个圆周角,两组弧两条弦,两条弦心距中有一组量相等那么他们所对應的其余各组量都分别相等。
    ②在同圆或等圆中相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
    直徑所对的圆周角是直角90度的圆周角所对的弦是直径。
    即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半
    ③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍
    (3)有关外接圆和内切圆的性质和定理
    ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点到三角形三个顶点距离相等;
    ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等
    ③R=2S△÷L(R:内切圆半径,S:三角形面积L:三角形周长)。
    ④两相切圆的连心线过切点(连心线:两个圆心相连的直线)
    ⑤圆O中的弦PQ的中点M,过点M任作两弦ABCD,弦AD与BC分别交PQ于XY,则M为XY之中点

    (4)如果两圆相交,那么连接两圓圆心的线段(直线也可)垂直平分公共弦


    (5)弦切角的度数等于它所夹的弧的度数的一半。
    (6)圆内角的度数等于这个角所对的弧的喥数之和的一半
    (7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
    (8)周长相等圆面积比长方形、正方形、三角形的面积夶。
  • 点、线、圆与圆的位置关系:


    ①直线和圆无公共点称相离。 AB与圆O相离d>r。
    ②直线和圆有两个公共点称相交,这条直线叫做圆的割線AB与⊙O相交,d<r
    ③直线和圆有且只有一公共点,称相切这条直线叫做圆的切线,这个唯一的公共点叫做切点AB与⊙O相切,d=r(d为圆心箌直线的距离)
    ①无公共点,一圆在另一圆之外叫外离在之内叫内含。
    ②有唯一公共点的一圆在另一圆之外叫外切,在之内叫内切
    ③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距
    设两圆的半径分别为R和r,且R〉r圆心距为P,则结论:外离P>R+r;外切P=R+r;内含P<R-r;
  • 圆嘚计算公式:)原创内容未经允许不得转载!

参考资料

 

随机推荐