ug电火花电极放电图纸材料在充放电过程中为什么会发生粉化现象

设为首页|加入收藏
锂电池纳米技术到底实现了什么?
来源:纳米人&&&发布时间: 09:19
设置字体:
关注度:8393 次
摘要:近十年以来,通过对新电极材料和新存储机理的开发研究,基于锂的可重复充电电池技术得到了飞跃发展,电池性能不断提高。
【高工锂电综合报道】
近十年以来,通过对新电极材料和新存储机理的开发研究,基于的可重复充电电池技术得到了飞跃发展,电池性能不断提高。得益于的不断探索发现,传统电池材料存在的许多重难点基础问题极有希望得到解决。
  一、纳米技术致力于解决传统电池领域的哪些重大问题?
  1. 体积变化导致活性颗粒和电极的开裂与破碎
  传统嵌入式电极材料在充放电过程中的体积变化较小。而对于新型的高容量电极材料而言,由于充放电过程中,大量Li物种嵌入和脱嵌,发生巨大的体积变化。经过多次循环之后,活性颗粒和电极材料会开裂和破碎,影响电学传导,并造成容量降低,最终导致电池失效,大大缩短了电池的使用寿命。据报道,合金型负极材料的体积膨胀率中,Si为420%,Ge和Sn为260%,P为300%。而传统的石墨负极只有10%。
图1. 活性颗粒和电极材料在充放电过程中开裂和破碎的过程
  那么,纳米技术是如何解决体积变化这个问题的呢?
  Si负极的解决方案
  纳米材料一个天然优势就在于,其尺寸较小,可以在颗粒和电极层面上有效抵抗力学上的破坏。高容量电极材料有一个基本参数,叫做临界破碎尺寸。这个参数值取决于材料的反应类型(譬如合金反应,转化反应)、力学性能、结晶度、密度、形貌以及体积膨胀率等一系列参数。而且,电化学反应速率对于颗粒的开裂和破碎影响重大,充放电速率越快,产生的应力就越大。当颗粒尺寸小于这个临界尺寸时,锂化反应引起的应力就能得到有效控制,从而缓解颗粒的的开裂和破碎行为。
  研究表明,Si纳米柱的临界尺寸是240-360 nm,Si纳米线的临界尺寸是300-400 nm,这一区间范围主要是受到电化学发宁速率的影响。晶化Si纳米颗粒的临界尺寸大约是150 nm。
图2. Si纳米线负极材料可以适应应力的影响
  因此,颗粒的破碎问题可以通过使用低于临界尺寸的各种纳米结构材料来实现,譬如纳米柱、纳米线、纳米颗粒、纳米管、纳米棒、以及纳米复合材料等。至于电极的破碎问题主要是采用一系列胶粘方法将Si纳米颗粒粘结在集流器上实现。
  S正极的解决方案
  S具有高比容量和低成本的优势,位列最具实用前景的锂电池正极材料之一,当S通过锂化反应完全转化为Li2S时,其理论体积膨胀率高达80%。因此,S正极和其他高容量电极材料一样,也存在粉化的问题。除此之外,S的锂化过程中一般会产生多种可溶的聚合硫化物中间体,而S正极的膨胀将导致中间体从电极中泄露出来,降低电池的性能。
  众所周知,这些可溶解的中间体可以通过包裹的方式防止泄露。充放电过程中,
  core-shell结构的保护壳层会发生破裂,从而引起聚合硫化物中间体的泄露。于是,研究人员设计出了具有空心壳层的S@TiO2,S@聚合物等yolk-shell结构,或者其他限域结构,有效解决了体积膨胀造成的聚合硫化物泄露以及粉化的问题。
图3. S嵌在介孔碳中
  2. SEI膜(固体-电解质中间相)的稳定性
  在锂电池中,常用电解液中有机碳酸盐的还原电位比负极材料的工作电压要高。因此,在电池充电过程中,电解液会被还原,并在电极表面生成一层SEI膜。这层膜可以传导锂离子,却不导电,从而会在负极材料表面越长越厚。稳定的SEI膜对负极材料的钝化作用有助于负极材料高库伦效率和长期稳定性的实现,然而,体积变化导致SEI不断变化,难以维持稳定。
图4. Si表面SEI膜的形成与稳定策略
  纳米技术如何实现SEI膜的稳定呢?
  Si负极
  针对Si负极,主要采用空心包裹的策略来实现SEI膜的稳定。譬如Si@C,Si@CNT,Al@TiO2等多种yolk-shell结构的设计,既提供了电解液阻隔层,又为活性颗粒的体积膨胀预留了空间,电池性能从而得到有效提高。
扫描下方二维码,关注高工锂电官方微信(weixin-gg-lb)
此文精彩有价值,请用移动端扫一扫,分享给朋友
8月22日,以“‘后整顿’时代,怎样才能活得更好? ”为主题的第九届高工锂电产业高峰论坛暨2016高工电动车(客车、乘用...
凡本网注明“来源:高工锂电网”的所有作品,版权均属于高工锂电网,转载请注明“来源:高工锂电网”。违反上述声明者,本网将追究其相关法律责任。 本网转载自其它媒体的信息,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
&&&&联系人:郑先生
&&&&Email:ly.
&&&&发送邮件时用@替换#
&&&&***:8-843
高工旗下网站:
战略合作媒体:
行业组织:
友情链接:
高工锂电-领先的产业研究与传媒机构&
密&&&&码:课题组在锂离子电池硅/碳复合负极材料研究方面取得系列进展
目前广泛使用的商业锂离子电池负极材料主要为石墨,其理论容量为372mAh/g,并且开发已接近理论值,很难适应未来大容量、高功率、低成本的化学电源的需求,如电动汽车和电网调峰储能等等。因此,大量研究瞄准硅基负极材料,因为它具有极高的理论储锂容量(4200 mAh/g),被认为是最有希望取代目前石墨的下一代负极材料。但是由于硅基材料在充放电过程中发生巨大的体积变化,导致电池在循环过程中电极材料会发生破裂、粉化、结构崩塌等缺点,加上硅的导电性能很低,致使不可逆容量较高、循环稳定性较差。目前研发工作主要集中在纳米、薄膜、多孔、合金、复合等结构的硅基负极材料,但是这些材料的制备方法普遍存在成本高、工艺复杂、设备要求苛刻、批量生产困难等问题,难以规模化量产。最近,中国科学院过程工程研究所苏发兵研究员领导的能源催化与多孔材料课题组开发了一种可规模化制备多孔硅复合负极材料的方法,研究结果发表在德国应用化学期刊()。
他们借鉴有机硅单体合成工业过程,以工业硅粉和氯甲烷为原料,通过有机硅行业广泛使用的Rochow反应,利用多种铜基催化剂在温和条件下制备出多孔硅/碳复合材料,通过简单后处理工艺得到硅/碳复合负极材料。电化学测试表明,在循环100周之后仍然保持了1000mAh/g左右的容量。同时制备过程中副产的多种有机硅单体可作为有机硅材料的原料,铜催化剂可回收利用。目前我国有机硅单体产量每年约200万吨,消耗的硅粉原料约50万吨。若将有机硅单体生产过程设备与多孔硅材料的制备相结合,控制合适的生产工艺条件,将有望解决多孔硅/碳复合负极材料的低成本规模化制备的问题。该制备工艺过程和负极材料已获得发明专利授权(利用硅与卤代烃催化反应制备多孔硅材料的方法,ZL.X;一种锂离子电池硅基负极复合材料及其制备方法,ZL.5)。
此外,他们利用有机硅主要单体二甲基二氯硅烷作为硅源和碳源,通过化学气相沉积的方法,对商业化石墨负极材料进行表面改性,得到了性能优良的硅/碳复合负极材料();利用单体合成中的廉价液相副产物一甲基三氯硅烷作为硅源和碳源,通过化学气相沉积的方法,直接得到了高容量的硅/碳纳米球形复合负极材料(,);利用有机硅工业生产中的含硅固体残渣,经过提铜纯化后,与商业石墨负极材料复合,制备了性能优良的硅/碳复合负极材料()。该课题组同时在有机硅单体合成使用的铜基催化剂的制备与废铜催化剂的回收利用等方面也做了大量工作,发表了多篇文章,并申请了系列国家发明专利,详见课题组网页最近,他们又以廉价软碳材料(炭黑、石油焦、针状焦等)和硅粉(商业纳米硅粉、废触体提取的硅粉)等为原料,通过喷雾成球并高温处理,得到多种微球复合负极材料,并申请了国家发明专利(.5、.5、.3),部分研究结果将陆续发表。
上述部分材料将进入放大生产试验,相关研究得到了中科院百人计划、国家自然科学基金、中科院院地合作局、多相复杂系统国家重点实验室和相关合作企业的资助,在此表示感谢!
图1.多孔硅/碳复合材料制备过程示意图(a),SEM图(b)及循环性能(c)。
(多相复杂系统国家重点实验室张在磊、王艳红)
地址:北京市海淀区中关村北二条1号
邮编:100190
版权所有:多相复杂系统国家重点实验室更多公众号:gh_a百纳知识致力于求真、创新的知识精神,立志要做各类知识的分享者。最新文章对这篇文章不满意?您可以继续搜索:百度:搜狗:感谢您阅读崔屹: 改变世界的锂电池之梦,本文可能来自网络,如果侵犯了您的相关权益,请联系管理员。QQ:以下试题来自:
判断题绝缘材料在电场作用下,尚未发生绝缘结构的击穿时,其表面或与电极接触的空气中发生的放电现象,称为绝缘闪络。 参考***对
为您推荐的考试题库
您可能感兴趣的试卷
你可能感兴趣的试题
1.判断题 参考***错2.判断题 参考***对3.判断题 参考***对4.判断题 参考***对5.判断题 参考***错

参考资料

 

随机推荐