新区,比例不到500。70慈航新区女头国标。能卖多少游戏币

Airiti Library???上???
??子?池矽?氧化??合??材料???分析
Synthesis and Characterization of Zirconia-Silicon Composite Anode Materials for Lithium-ion Batteries
10.6342/NTU.
??子二次?池 ; 矽 ; 溶?凝?法 ; 氧化??凝? ; ?合??材料 ; Li-ion batteries ; Silicon ; Sol-gel process ; zirconia aerogel ; composite anode material
??大?化?工程?研究所?位?文
卷期/出版年月
本?文的主要目的???以矽?主?的??子二次?池??材料,?且?氧化?形成?合材料以提高其振?密度及矽??或矽碳?合??的???容量密度。矽,?有?高的理??量?容量密度(大於3600 mAh/g)、?富的?藏量?富及安全?毒性的特性,此外,?著半????成熟所伴?的提?技??步,使其相??格便宜,?目前?有可能取代石墨(372 mAh/g),成?新世代高?容量??子?池的??材料之一。但由於充放?????烈膨??低??度,以及固相?解液介?(SEI)的?面影?,而造成?板??不?定以及充放?的?容不可逆性。?些原因使得??池在?用上受到限制,?了克服?些??,我?使用溶?凝?法?作矽?氧化?的?合材料,?且利用不同的?碳方式,改善氧化?不??的特性,?而?作出一具高振?密度以及高充放??定性的矽基?合??材料。
合成的概念在於?奈米?的矽?粒?正丙醇?(氧化?的前?物)混合均?於?丙醇溶?中,使用溶?凝?法於其中生成氧化???,如此便可以得到矽?氧化??合??。?此??於高???作?密化?理,即可得到矽?氧化??合??材料。??後得到的?合粉?仍可?持其高孔隙度,?利用?些孔隙??和氧化?的??械?度,??矽材在充放??程中的不可逆膨?。
首先,先?作出高孔隙度的氧化??凝?(aerogel)著手,在不使用超?界流?乾燥法的情?下(常?於?作高孔隙度的凝?),?化??流程,?整溶?凝?法?作凝?中的各?重要因素,如前?物?度、粉????度、含水量、凝???等,?到?程最佳化的目?,?且得到高孔隙度的氧化?粉?。此外,在真空?境下??,?到高???(大於500度)仍可?持粉?孔隙度的?果。之後,以?些?????基?,?奈米?矽?粒加入凝?混合均?,乾燥後???作高????理得到高孔隙度的矽-氧化?粉?。
此外,???碳方式分??果糖?碳以及?青?碳。前者?溶??程中,直接浸泡?定的矽?氧化???(??前)於果糖溶液中,使得果糖溶液可以均?地分散於高孔隙度的??中,?且在矽表面形成果糖包覆,在高???後裂解成碳?包覆?得到矽-氧化?-碳?合材料,???果?示,???碳?理可以提升??度?大幅降低矽基??阻抗。後者??矽?氧化???先?行第一步低???(400度),得到矽?氧化?粉?後再??青丙酮溶液混合,乾燥後做第二次??,??青裂解成碳而得到矽-氧化?-碳?合材料,???果?示,?青***的碳能填?孔洞??,以?到降低表面??降低SEI膜生成而?致的不可逆。
此外,??不一?的奈米?矽原料的使用,也於本?文中探?。???果?示,矽-氧化?-碳?合???品在50圈的充放?後,仍然可以?持70%的?容量。
The main purpose of this research is to develop a high tap-density anode material based on silicon for lithium ion batteries. Silicon, in addition to its abundance on earth and its environmentally-friendly property, it also possesses a high theoretical capacity ( & 3600 mAh/g) compared to graphite (372 mAh/g). However, the dramatic volumetric variations during cycling and intrinsic low conductivity result in structural instability and poor cyclability. Moreover, the irreversibility caused by solid electrolyte interphase (SEI) formation accelerates the capacity fading as well. In order to solve those problems, we use sol-gel process to make a porous zirconia-silicon composite material and use different carbon coating process to improve the electronic insulation property of zirconia.
To synthesize Si-ZrO2 composite, nano-sized Si is dispersed in iso-propanol and at the same time, the zirconia gel forms by sol-gel method with zirconium propoxide as precursor. After deriving Si-ZrO2 gel, high temperature treatment is conducted to have porous Si-ZrO2 powder. The pore volume and strong mechanical property of zirconia are utilized to buffer the irreversible expansion of Si during cycling.
The preliminary work is to make a porous zirconia which can provide sufficient pore volume for buffering expansion of Si. This research has developed a rather-simple process (without supercritical drying, which is typically regarded as indispensable drying method for deriving aerogel) by controlling several important factors in sol-gel process, such as concentration of precursor, calcination temperature, water content, and gel state to derive porous zirconia. Besides, high-temperature treatment under vacuum environment can preserve more pore volume than that under 3% H2/N2 environment ( T & 500℃ ). After all the factors are well studied, the silicon is mixed with zirconia aerogel and then calcined to have porous Si-ZrO2 composite powder.
Besides, carbon coating methods consist of fructose carbon coating and pitch carbon coating. The former one is directly soaking stable Si-ZrO2 gel in fructose solution and the fructose solution can permeate into the porous gel and form a fructose layer on Si surface. The fructose layer decomposes into carbon layer after high temperature treatment. The experimental result indicates that the impedance of Si-ZrO2 electrode decreases a lot with increasing conductivity of Si-ZrO2-C. Different from fructose carbon coating, pitch carbon coating adopted two-step calcinations. Si-ZrO2 proceeds the 1st calcination under low temperature (400℃) to have Si-ZrO2 powder and then the powder is mixed with pitch in acetone solution. After drying process, the collected powder proceeds the 2nd calcination to have Si-ZrO2-C. The experimental result shows that the dissociated carbon indeed fills the pore volume and reduces the surface area of porous Si-ZrO2 structure to improve the irreversible capacity from SEI formation.
Last, two kinds of nano silicon with different sizes and qualities are used to form Si-ZrO2-C composite. The experimental result shows that Si-ZrO2-C electrode can retain 70% of 1st cycle charge capacity after running 50 cycles.
化?工程?研究所
[2] B. Scrosati and J. Garche, Journal of Power Sources, 195,
[3] G. Pistoia, “Lithium batteries : science and technology”, Kluwer Academic
sol-gel processing”, Academic Press: London (1990).
[12] J. Livage, M. Henry and C. Sanchez, Prog. Solid St. Chem., 18, 259-341 (1988).
[13] R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc., 72, ).
[16] J. Livage, C. Sanchez, M. Henry and S. Doeuff, Solid State Ionics, 32-33,
D.R. Ulrich, p.317. Mater. Res. Soc. : Pittsburgh, Pa. (1988).
[18] A.J. Vega and G. W. Scherer, J. Non-Cryst. Solids, 111, 153 (1989).
[19] R.D. Shoup, in Ultrastructure Processing of Advanced Ceramics, edited by J.D.
Mackenzie and D.R. Ulrich, p.347. Wiley: New York (1988).
[21] F. Gallino , C. D. Valentin and G. Pacchioni, Phys. Chem. Chem. Phys., 13,
[22] Ralph Nielsen "Zirconium and Zirconium Compounds" in Ullmann's
[24] J. Mrowiec-Bialon and L. Pajak, Journal of Non-Crystalline Solids, 225, 115-119
[25] C. Stocker and A. Baiker, Journal of Non-Crystalline Solids,223, 165-178
[27] B. Scrosati, Nature, 373, 557-558 (1995).
[29] W. A. V. Schalkwijk and B. Scrosati, Advances in lithium-ion batteries,
[30] M. S. Whittingham, Science, 192,
[40] G. X. Wang, J. Yao, and H. K. Liu, Electrochemical and Solid State Letters, 7,
[41] H. Li, X. J. Huang, L. Q. Chen, G. W. Zhou, Z. Zhang, D. P. Yu, Y. J. Mo, and N.
Pei, Solid State Ionics, 135, 181-191 (2000).
[43] A. Netz, R. A. Huggins, and W. Weppner, Journal of Power Sources, 119, 95-100
Wu, Journal of Power Sources, 140, 139-144 (2005).
Communications,
Electrochemical and Solid State Letters, 8, A516-A520 (2005).
of the Electrochemical Society, 155, A158-A163 (2008).
[53] M. Winter and J. O. Besenhard, Electrochimica Acta, 45, 31-50 (1999).
[55] H. Li, X. J. Huang, L. Q. Chen, Z. G. Wu, and Y. Liang, Electrochemical and
[56] Z. P. Guo, J. Z. Wang, H. K. Liu, and S. X. Dou, Journal of Power Sources, 146,
Electrochemical Society, 146,
secondary battery and method of fabricating the same," US patent
(A1) (2006).
Electrochemistry Communications, 8,
[64] X. L. Wang, J.P. Tu, J. Y. Xiang, and X. H. Huang, Funct. Mater. Lett. 2, 23 (2009).
[65] H. Y. Lee and S. M. Lee, Electrochemistry Communications, 6, 465-469 (2004).
Power Sources, 192, 644-651 (2009).
Journal of the Electrochemical Society, 152, A (2005).
[1] J. M. Tarascon and M. Armand, Nature, 414, 359-367 (2001).
Publishers, Boston (2004).
[4] M. M. Thackeray, J. T. Vaughey, and L. M. L. Fransson, Journal of the Minerals
Metals & Materials Society, 54, 20-23 (2002).
[5] J. O. Besenhard, “Handbook of battery materials”, Wiley-VCH, New York
[6] C. J. Wen and R. A. Huggins, Journal of Solid State Chemistry, 37, 271-278
[7] C.J. Brinker and G.W. Scherer, “Sol-gel science: The physics and chemistry of
[8] H.S. Nalwa, “Handbook of Nanostructured Materials and Nanotechnology”,
Academic Press: New York, NY, USA, 5, 501-575 (2000).
[9] J. D. Wright and Nico A.J.M. Sommerdijk, “Sol-gel materials: Chemistry and
Applications”, Amsterdam : Gordon and Breach Science Publishers (2001).
[10] J. Livage, M. Henry, J. D. Mackenzie and D. R. Ulnch, Eds. “Ultrastructure Processing of Advanced Ceramics”, Willy: New York (1988).
[11] C. Sanchez, J. Livage, and M. Henry and F. Babonneau, J. Non-Cryst. Solids, 100, 65 (1988).
[14] C. Sanchez and J. Livage, New J. Chem., 14, 513 (1990).
[15] J. C. Giuntini, W. Granier, J. V. Zanchetta, A. J., Mater. Sci. Lett., 9,
633-638 (1989).
[17] F. Babboneau, A. Leaustic and J. Livage in Better Ceramics Through Chemistry
III, Mater, Res. Soc. Symp. Rpoc. 121, edited by C.J. Brinker, D.E. Clark and
[20] A. H. Heuer, L. W. Hobbs, Eds., Adv. Ceram., 3, 475 (1981).
Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2005).
[23] G. Yi and M. Sayer, Journal of Sol-Gel Science and Technology, 6, 65-74 (1996).
[26] C. Stocker, M. Schneider, and A. Baiker, Journal of Porous Materials, 2,
171-183 (1995).
[28] M. Wakihara, Materials Science & Engineering R-Reports, 33, 109-134 (2001).
Kluwer Academic/Plenum Publishers, New York, NY (2002).
[31] A. N. Dey, Journal of the Electrochemical Society, 118,
[32] R. A. Sharma and R. N. Seefurth, Journal of the Electrochemical Society, 123,
[33] B. A. Boukamp, G. C. Lesh, and R. A. Huggins, Journal of the Electrochemical
Society, 128, 725-729 (1981).
[34] C. Vandermarel, G. J. B. Vinke, and W. Vanderlugt, Solid State Communications,
54, 917-919 (1985).
[35] J. W. Kim, J. H. Ryu, K. T. Lee, and S. M. Oh, Journal of Power Sources, 147,
227-233 (2005).
[36] W. J. Weydanz, M. Wohlfahrt-Mehrens, and R. A. Huggins, Journal of Power
Sources, 81, 237-242 (1999).
[37] B. Gao, S. Sinha, L. Fleming, and O. Zhou, Advanced Materials, 13, 816-819
[38] C. J. Wen and R. A. Huggins, Journal of Solid State Chemistry, 37, 271-278
[39] J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie, J. P. Peres, D. Talaga,
M. Couzi, and J. M. Tarascon, Advanced Functional Materials, 17,
A250-A253 (2004).
[42] P. Limthongkul, Y. I. Jang, N. J. Dudney, and Y. M. Chiang, Acta Materialia, 51,
[44] T. D. Hatchard and J. R. Dahn, Journal of the Electrochemical Society, 151,
A838-A842 (2004).
[45] J. Li and J. R. Dahn, Journal of the Electrochemical Society, 154, A156-A161
[46] J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, Electrochemical and Solid State
Letters, 7, A306-A309 (2004).
[47] C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Chemical Society Reviews, 39,
[48] W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang, and N. L.
[49] M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, and F. M. Petrat, Chemical
[50] M. Holzapfel, H. Buqa, F. Krumeich, P. Novak, F. M. Petrat, and C. Veit,
[51] S. D. Beattie, D. Larcher, M. Morcrette, B. Simon, and J. M. Tarascon, Journal
[52] D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J. C. Jumas, and J. M.
Tarascon, Journal of Materials Chemistry, 17,
[54] M. N. Obrovac and L. J. Krause, Journal of the Electrochemical Society, 154,
A103-A108 (2007).
Solid State Letters, 2, 547-549 (1999).
448-451 (2005).
[57] J. Yang, M. Winter, and J. O. Besenhard, Solid State Ionics, 90, 281-287 (1996).
[58] J. Yang, Y. Takeda, N. Imanishi, and O. Yamamoto, Journal of the
[59] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Science, 276,
[60] I. A. Courtney, W. R. McKinnon, and J. R. Dahn, Journal of the Electrochemical
Society, 146, 59-68 (1999).
[61] U. Kasavajjula, C. S. Wang, and A. J. Appleby, Journal of Power Sources, 163,
[62] H. C. Wu, M. H. Yang, N. L. Wu, and W. R. Liu, "Anode materials of lithium
[63] D.Q. Shi, J.P. Tu, Y.F. Yuan, H.M. Wu, Y. Li, X. B. Zhao, Journal of
[66] G. X. Wang, J. H. Ahn, J. Yao, S. Bewlay, and H. K. Liu, Electrochemistry
Communications, 6, 689-692 (2004).
[67] T. Hasegawa, S. R. Mukai, Y. Shirato, and H. Tamon, Carbon, 42,
[68] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, Nature
Materials, 9, 353-358 (2010).
[69] W. R. Liu, M. H. Yang, H. C. Wu, S. M. Chiao, and N. L. Wu, Electrochemical
and Solid State Letters, 8, A100-A103 (2005).
[70] N. Ding, J. Xu, Y. X. Yao, G. Wegner, I. Lieberwirth, and C. H. Chen, Journal of
[71] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy,
I. Luzinov, G. Yushin, Science 334, 75 (2011).
[72] ”http://web.pdx.edu/~pmoeck/phy381/Topic5a-XRD.pdf.”.
[73] W. R. Liu, J. H. Wang, H. C. Wu, D. T. Shieh, M. H. Yang, and N. L. Wu,
[74] Y. M. Lin, H. C. Wu, Y. C. Yen, and N. L. Wu, Journal of The Electrochemical
Society, 152 8 A (2005).

参考资料

 

随机推荐