乘有人售票公交车,去A地需要国航三元桥售票处,B地要一元,一人上车时买了去A地的票,结果在B地下的车,可以退钱吗

var sogou_ad_id=731545;
var sogou_ad_height=90;
var sogou_ad_width=980;当前位置:
>>>某1路公交车上有(3a+b)人,路过二中门口时下去了(a+2b)人,又上车..
某1路公交车上有(3a+b)人,路过二中门口时下去了(a+2b)人,又上车了一些学生,此时车上共有乘客(8a-5b)人。求有多少学生上车?若a=10,b=8时,说说公交车路过二中门口时下去了多少人?上车了多少学生?
题型:解答题难度:中档来源:期末题
解:(6a-4b)人; 26人;28人
马上分享给同学
据魔方格专家权威分析,试题“某1路公交车上有(3a+b)人,路过二中门口时下去了(a+2b)人,又上车..”主要考查你对&&写代数式,代数式的求值 &&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
写代数式代数式的求值
代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。数的一切运算规律也适用于代数式。单独的一个数或者一个字母也是代数式。例如:ax+2b,-2/3,b^2/26,√a+√2等。带有“(≥)” “=”“≠”等符号的不是代数式注意: 1、不包括等于号(=、≡)、不等号(≠、≤、≥、&、&、≮、≯)、约等号≈。 2、可以有绝对值。例如:|x|,|-2.25| 等。代数式的书写要求:一、数字与数字相乘时,中间的乘号不能用“? ”代替,更不能省略不写。如:4乘5,写作4×5,不能写成4?5,更不能写成45二、数字与字母相乘时,中间的乘号可以省略不写,并且数字放在字母的前面。如: a的5倍,写作:5a&不要写成a5。三、两个字母相乘时,中间的乘号可以省略不写,字母无顺序性如: a乘b ,写成ab或ba& 四、当字母和带分数相乘时,要把带分数化成假分数。如:3 1/2 乘a& 写作:7/2 a&&& 不要写成32/1a& 五、含有字母的除法运算中,最后结果要写成分数形式,分数线相当于除号。如:5除以a& 写作5/a&&& , 不要写成5÷a ; c除以 d写作 ,不要写成 c÷ d六、如果代数式后面带有单位名称,是乘除运算结果的直接将单位名称写在代数式后面,若代数式是带加减运算且须注明单位的,要把代数式括起来,后面注明单位。如:甲同学买了5本书,乙同学买了a 本书,他们一共买了(5+a )本。代数式的书写格式:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”; (2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。 代数式:代数式的值:用数值代替代数式的字母,按照代数式指明的运算,计算出结果才,叫做代数式的值。 代数式求值的步骤:(1)代入;(2)计算。常用的代入方法有直接代入法与整体代入法。注:代数式的值的取值条件:(1)不能使代数式失去意义;(2)不能使所表示的实际问题失去意义。求代数式的值的方法:①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入字母的值,然后计算。②给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化成为用已知关系表示的形式。③在给定条件中,字母之间的关系不明显,字母的值隐含在题设条件中,该类题应先由题设条件求出字母的值,再求代数式的值。
发现相似题
与“某1路公交车上有(3a+b)人,路过二中门口时下去了(a+2b)人,又上车..”考查相似的试题有:
124288224056293743530960901607534602当前位置:
>>>甲、乙两汽车,甲从A地去B地,乙从B地去A地,同时相向而行,1.5..
甲、乙两汽车,甲从A地去B地,乙从B地去A地,同时相向而行,1.5小时后两车相遇.相遇后,甲车还需要2小时到达B地,乙车还需要98小时到达A地.若A、B两地相距210千米,试求甲乙两车的速度.
题型:解答题难度:中档来源:不详
∵A、B两地相距210千米,1.5小时后两车相遇.∴两车的速度和为210÷1.5=140,设甲车的速度为x千米/时,乙车的速度为(140-x)千米/时,由题意得2x+98×(140-x)=210,解得x=60,∴140-x=80.答:甲车的速度为60千米/时,乙车的速度为80千米/时.
马上分享给同学
据魔方格专家权威分析,试题“甲、乙两汽车,甲从A地去B地,乙从B地去A地,同时相向而行,1.5..”主要考查你对&&一元一次方程的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
一元一次方程的应用
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。列一元一次方程解应用题的一般步骤:列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:&⑴审题:理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。&&⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系; ①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。&&⑶用含未知数的代数式表示相关的量。&&⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。&&⑸解方程及检验。&&⑹答题。&&综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出***)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。一元一次方程应用题型及技巧:列方程解应用题的几种常见类型及解题技巧: (1)和差倍分问题: ①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。 (2)行程问题: 基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间, 路程=速度×时间。 ①相遇问题:快行距+慢行距=原距; ②追及问题:快行距-慢行距=原距; ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度, 逆水(风)速度=静水(风)速度-水流(风)速度 例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? 两车同时开出,相背而行多少小时后两车相距600公里? 两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? 两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? 慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。) 323
(3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。 这类问题要搞清人数的变化。例.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?(4)工程问题: 三个基本量:工作量、工作时间、工作效率; 其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。 例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(5)利润问题: 基本关系:①商品利润=商品售价-商品进价; ②商品利润率=商品利润/商品进价×100%; ③商品销售额=商品销售价×商品销售量; ④商品的销售利润=(销售价-成本价)×销售量。 ⑤商品售价=商品标价×折扣率例.例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少? (6)数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a, 百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。 数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n--2表示;奇数用2n+1或2n--1表示。例:有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。(7)盈亏问题:“盈”表示分配中的多余情况;“亏”表示不足或缺少部分。 (8)储蓄问题:其数量关系是:利息=本金×利率×存期;:(注意:利息税)。 本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。&(9)溶液配制问题:其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。&
(10)比例分配问题:&这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。&还有劳力调配问题、配套问题、年龄问题、比赛积分问题、增长率问题等都会有涉及。
发现相似题
与“甲、乙两汽车,甲从A地去B地,乙从B地去A地,同时相向而行,1.5..”考查相似的试题有:
534987166096135513343090475031501588

参考资料

 

随机推荐