& 三角形的面积知识点 & “九年级数学兴趣小组组织了以“等积变形”为...”习题详情
0位同学学习过此题,做题成功率0%
九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.第二学习小组发现:如图(2),点P是反比例函数上任意一点,过点P作x轴、y轴的垂线,垂足为M、N,则矩形OMPN的面积为定值|k|.请利用上述结论解决下列问题:(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则S△BDF=&.(2)如图(4),点P、Q在反比例函数图象上,PQ过点O,过P作y轴的平行线交x轴于点H,过Q作x轴的平行线交PH于点G,若S△PQG=8,则S△POH= &,k= &.(3)如图(5)点P、Q是第一象限的点,且在反比例函数图象上,过点P作x轴垂线,过点Q作y轴垂线,垂足分别是M、N,试判断直线PQ与直线MN的位置关系,并说明理由.&
本题难度:一般
题型:解答题&|&来源:2010-浙教版九年级(上)期中数学试卷2
分析与解答
习题“九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.第二学习小组发现:如图(...”的分析与解答如下所示:
(1)连接CF,根据正方形的性质可知,CF∥BD,△CBD与△FBD同底等高,故S△BDF=S△BDC,可求解;(2)设P(x,y),则k=xy,根据P点所在象限及P、Q关于原点中心对称,得GQ=-2x,PG=2y,由已知,得S△PQG=&GQ&PG=8,可求S△POH及k的值;(3)作PA⊥y轴,QB⊥x轴,垂足为A,B,连接PN,MQ,根据双曲线的性质可知,S矩形AOMP=S矩形BONQ=k,可得S矩形ANCP=S矩形BMCQ,则有S△NCP=S△MCQ,S△NPQ=S△MPQ,可证PQ∥MN.(1)连接CF,∵四边形ABCD与四边形CEFG都是正方形,∴CF∥BD,△CBD与△FBD同底等高,∴S△BDF=S△BDC=S正方形ABCD=2;(2)设P(x,y),则k=xy,根据题意,得GQ=-2x,PG=2y,∴S△PQG=&GQ&PG=8,即o(-2x)o2y=8,解得xy=-4,即k=-4,S△POH=&OH&PH=-xy=2;(3)PQ∥MN.理由:作PA⊥y轴,QB⊥x轴,垂足为A,B,连接PN,MQ,根据双曲线的性质可知,S矩形AOMP=S矩形BONQ=k,∴S矩形ANCP=S矩形BMCQ,可知S△NCP=S△MCQ,∴S△NPQ=S△MPQ,∴PQ∥MN.故本题***为:(1)2,(2)2,-4.
找到***了,赞一个
如发现试题中存在任何错误,请及时纠错告诉我们,谢谢你的支持!
九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.第二学习小组发...
错误类型:
习题内容残缺不全
习题有文字标点错误
习题内容结构混乱
习题对应知识点不正确
分析解答残缺不全
分析解答有文字标点错误
分析解答结构混乱
习题类型错误
错误详情:
我的名号(最多30个字):
看完解答,记得给个难度评级哦!
经过分析,习题“九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.第二学习小组发现:如图(...”主要考察你对“三角形的面积”
等考点的理解。
因为篇幅有限,只列出部分考点,详细请访问。
三角形的面积
(1)三角形的面积等于底边长与高线乘积的一半,即S△=12×底×高.(2)三角形的中线将三角形分成面积相等的两部分.
与“九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.第二学习小组发现:如图(...”相似的题目:
如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2-k1的值是&&&&1248
如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+b1与两坐标轴分别交于A、D两点,与抛物线交于B(1,3)、C(2,2)两点.(1)求直线与抛物线的解析式;(2)若抛物线在x轴上方的部分有一动点P(x,y),求△PON的面积最大值;(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△POD面积的?若存在,请求出点P的坐标;若不存在,请说明理由.&&&&
例.如图①,平面直角坐标系xOy中有点B(2,3)和C(5,4),求△OBC的面积.【解析】过点B作BD⊥x轴于D,过点C作CE⊥x轴于E.依题意,可得S△OBC=S梯形BDEC+S△OBD-S△OCE==&(3+4)&(5-2)+&2&3-&5&4=3.5.∴△OBC的面积为3.5.(1)如图②,若B(x1,y1)、C(x2,y2)均为第一象限的点,O、B、C三点不在同一条直线上.仿照例题的解法,求△OBC的面积(用含x1、x2、y1、y2的代数式表示);(2)如图③,若三个点的坐标分别为A(2,5),B(7,7),C(9,1),求四边形OABC的面积.&&&&
“九年级数学兴趣小组组织了以“等积变形”为...”的最新评论
该知识点好题
1(2012o德州)如图,两个反比例函数y=1x和y=-2x的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为( )
2如图,正方形ABCD的边长为1,E为AD中点,P为CE中点,F为BP中点,则F到BD的距离等于( )
3在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为10,△BCF的面积为20,△CEF的面积为16,则四边形区域ADFE的面积等于( )
该知识点易错题
1(2012o德州)如图,两个反比例函数y=1x和y=-2x的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为( )
2如图,正方形ABCD的边长为1,E为AD中点,P为CE中点,F为BP中点,则F到BD的距离等于( )
3如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为&&&&,最小值为&&&&.
欢迎来到乐乐题库,查看习题“九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.第二学习小组发现:如图(2),点P是反比例函数上任意一点,过点P作x轴、y轴的垂线,垂足为M、N,则矩形OMPN的面积为定值|k|.请利用上述结论解决下列问题:(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则S△BDF=____.(2)如图(4),点P、Q在反比例函数图象上,PQ过点O,过P作y轴的平行线交x轴于点H,过Q作x轴的平行线交PH于点G,若S△PQG=8,则S△POH=____,k=____.(3)如图(5)点P、Q是第一象限的点,且在反比例函数图象上,过点P作x轴垂线,过点Q作y轴垂线,垂足分别是M、N,试判断直线PQ与直线MN的位置关系,并说明理由.”的***、考点梳理,并查找与习题“九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.第二学习小组发现:如图(2),点P是反比例函数上任意一点,过点P作x轴、y轴的垂线,垂足为M、N,则矩形OMPN的面积为定值|k|.请利用上述结论解决下列问题:(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则S△BDF=____.(2)如图(4),点P、Q在反比例函数图象上,PQ过点O,过P作y轴的平行线交x轴于点H,过Q作x轴的平行线交PH于点G,若S△PQG=8,则S△POH=____,k=____.(3)如图(5)点P、Q是第一象限的点,且在反比例函数图象上,过点P作x轴垂线,过点Q作y轴垂线,垂足分别是M、N,试判断直线PQ与直线MN的位置关系,并说明理由.”相似的习题。