渲染 ° lightblue blue Dat...

初三 英语 英语翻译 请详细解答,谢谢!
(13 15:53:26)_百度知道杜嘉班纳Light Blue浅蓝女士香水怎么样_百度知道1_00 Nature physics 2013 - Zeeman-type spin splitting controlled by an electric field-博泰典藏网
典藏文档 篇篇精品
1_00 Nature physics 2013 - Zeeman-type spin splitting controlled by an electric field
导读:Zeeman-typespinsplittingcontrolledbyanelectric?eldHongtaoYuan1,2*,MohammadSaeedBahramy1,3*,KazuhiroMorimoto1,SanfengWu4,KentaroNomura3,5,Bohm-JungYang3,HidekazuShimotani1,6,RyujiSu
Zeeman-typespinsplittingcontrolledbyanelectric?eld
HongtaoYuan1,2*,MohammadSaeedBahramy1,3*,KazuhiroMorimoto1,SanfengWu4,KentaroNomura3,5,Bohm-JungYang3,HidekazuShimotani1,6,RyujiSuzuki1,MinglinToh7,ChristianKloc7,XiaodongXu4,8,RyotaroArita1,3,NaotoNagaosa1,3andYoshihiroIwasa1,3*
Transition-metaldichalcogenidessuchasWSe2andMoS2haveelectronicbandstructuresthatareidealforhostingmanyexoticspin–orbitphenomena.HereweinvestigatethepossibilitytogenerateandmodulateagiantZeeman-typespinpolarizationinWSe2underanexternalelectric?eld.Bytuningtheperpendicularelectric?eldappliedtotheWSe2channelwithanelectric-double-layertransistor,weobserveasystematiccrossoverfromweaklocalizationtoweakanti-localizationinmagnetotransport.Ouropticalre?ectionmeasurementsalsorevealanelectricallytunableexcitonsplitting.Using?rst-principlescalculations,weproposethattheseareprobablyduetotheemergenceofamerelyout-of-planeandmomentum-independentspinsplittingatandinthevicinityoftheverticesoftheWSe2Brillouinzoneunderelectric?eld.Thenon-magneticapproachforcreatingsuchanintriguingspinsplittingkeepsthesystemtime-reversallyinvariant,therebysuggestinganewmethodformanipulatingthespindegreesoffreedomofelectrons.
pin–orbitinteraction(SOI)isarelativisticeffectoriginatingfromthecouplingofaparticle’sspinsandmomentumpunderanexternalelectricfieldE,asdescribedbytheSOI
?so=?μBσ·(p×E/2mc2),whereσ,μB,mandcHamiltonianH
arespinPaulimatrices,theBohrmagneton,theeffectivemassofcarriersandthevelocityoflight,respectively.Intheabsenceofinversionsymmetry,SOIliftsthespindegeneracyofelectronicstatesatgenerick-pointsintheBrillouinzone,leadingtointerestingeffectssuchasthespinHalleffect1,thespin-galvaniceffect2and
?so,thestrengthofspinballistictransport3.AsisevidentfromH
theeffectivemagneticfieldBeff=(p×E/2mc2)anditsresultingspinpolarizationiscruciallydependentonbothpandEandtheirrelativedirections4,5.OnepossiblewaytoregulateBeffistocreateanon-centrosymmetricpotentialwellatsemiconductorheterointerfacesbyapplyinganexternalelectricfieldEex.montoallofthesesystemsisaRashba-typespinsplitting(asschematizedinFig.1a)ofenergybandsaroundthehigh-symmetryk-pointsoftheBrillouinzone(forexample,the??-point)withamomentum-paredwithsuchanin-planeRashba-typespinpolariza-tion,theelectricalgenerationofout-of-planeZeeman-typespinpolarization,asdepictedinFig.1b,hasprovedtobeachallengingtask.Thisismainlybecausetheelectron/holepocketsareusuallyformedaroundtime-reversalk-points(forexample,the??-point),wheresuchaspinpolarizationissymmetry-forbidden,unlessthetime-reversalsymmetryisbroken,forinstance,byanexternalmag-neticfieldormagneticdopants.Furthermore,iftheFermisurfaceiscentredatalow-symmetrick-point,theresultingspintextureisoftenveryirregular.Inthispaper,weinvestigatethepossibilityofelectricallyinducingsuchanout-of-planeZeeman-likespinpolarizationusingionic-liquid-gatedfield-biningtheelectronictransportandopticalexperiments,weobserveanelectric-field-modulatedcrossoverfromweaklocalization(WL)toweakanti-localization(WAL)inmagnetoconductanceaswellasatunableexcitonsplittingintheopticalspectraofWSe2.Usingfirst-principlescalculationsweproposethattheseobservationsaremostlikelyduetoanelectric-field-inducedout-of-planeZeeman-likespinpolarization.Suchaspinpolarizationistheoreticallyshowntotakeplaceatandinthevicinityofspeciallow-symmetrick-pointsatthecorners(K-points)ofthehexagonalBrillouinzoneofWSe2withanalternatingsignbetweentheoppositecorners(KandK??points)duetothetime-reversalinvarianceofthesystem.Ourcalculationssuggestthattheresultingspinsplittingistunableandcanreach300meV,comparabletothelargestvaluesofspinsplittingreportedforRashbasystems7–11.
UsingWSe2single-crystalflakes,wehavefabricatedanelectric-double-layertransistor(EDLT).TheadvantageoftheEDLTisthatitcangeneratealargeinterfacialelectricfield(upto50MVcm?1or0.5eV??1),enablingahighdensitycarrieraccumulationatliquid/solidinterfaces14–20withtunableinversionasymmetry.Wechose2H–WSe2because:ithostsheavy5delementswithstrongatomicSOI(about450meV,muchstrongerthanthatinthemoreintensivelystudiedMoS2system21,22);itcanbecleavedintoatomicallyflatsurfaces,andthusisanaturallygoodcandidateforbeiandithasauniqueelectronicbandstructurewithtwonearlyenergy-degeneratevalencebandmaximaattwodifferentpointsoftheBrillouinzonewithdistinctsymmetry
1Quantum-Phase
ElectronicsCenterandDepartmentofAppliedPhysics,TheUniversityofTokyo,Tokyo113-8656,Japan,2GeballeLaboratoryfor
AdvancedMaterials,StanfordUniversity,Stanford,California94305,USA,3RIKENCenterforEmergentMatterScience(CEMS),Wako351-0198,Japan,4DepartmentofPhysics,UniversityofWashington,Seattle,Washington98195,USA,5InstituteforMaterialsResearch,TohokuUniversity,Sendai980-8577,Japan,6DepartmentofPhysics,TohokuUniversity,Sendai980-8578,Japan,7SchoolofMaterialsScienceandEngineering,Nanyang
TechnologicalUniversity,639-798,Singapore,8DepartmentofMaterialScienceandEngineering,UniversityofWashington,Seattle,Washington98195,USA.*e-mail:htyuan@ap.t.u-tokyo.ac.bahramy@ap.t.u-tokyo.ac.iwasa@ap.t.u-tokyo.ac.jp
NATUREPHYSICS|VOL9|SEPTEMBER2013|/naturephysics
In-Diplanpoe le
Mirror plane
E ? EVBM (eV)
0?1?2?3?4?5
Figure1|RashbaeffectversusZeemaneffectandtheelectronicstructureofbulk2H–WSe2.a,b,Schematicsrepresentingin-planeRashba-typespinpolarization(a)andout-of-planeZeeman-typespinpolarization(b).Theappliedelectric?eldEex(verticalgreenarrows)isperpendiculartothe2Dplanewherethecarriersarecon?ned.TheyellowplanerepresentstheFermilevel.c,Sideandtopviewsofthelayeredstructureof2H–WSe2.d,Anetin-planedipolemomentcanbefoundattheW4+ionsduetotheD3hsymmetry(C3v+M)ofeachSe–W–Semonolayer.InthebilayerWSe2(oneunitcell),thesymmetrybecomesD46h,sothatthenetin-planedipoleinthewholeunitcellbecomeszero.Bottominset:theBrillouinzoneof2H–WSe2.e,Theelectronicbandstructureofbulk2H–WSe2.
properties.AsshowninFig.1e,thehighestvalence-bandmaximum(VBM)islocatedattheBrillouinzonecentre,the??-point,whereastheotherone,lyingatslightlylowerenergies,appearsattheK-point.Ofparticularimportance,WSe2hasa2Hb–MoS2-typecrystalstructure(D46hsymmetryandtheP63/mmcspacegroup).TheprimitivecellofWSe2iscomposedoftwoformulaunits.Withineachunit,oneWatomissandwichedbetweentwoSeatoms,therebyformingaSe–W–Semonolayerstackingnon-symorphicallyalongthecaxiswithD3hsymmetry(Fig.1c).OwingtotheD3hsymmetry,anetin-planeelectricdipolemomentcanlocallyactontheWatomswithineachmonolayer(Fig.1d),playingacrucialroleininducingtheout-of-planespinpolarization,aswillbeshownlater.
Figure2aisacross-sectionaldiagramofanionic-liquid-gatedWSe2EDLT.ThesheetconductanceσxxasafunctionofgatevoltageVGshowsawell-definedambipolartransport(Fig.2b).TheHallcoefficientRHdeducedfromHalleffectmeasurementsisfoundtobenegativeintheVGrangeof[?6Vto+6V]at220K(Fig.2c).Loweringthetemperatureto2K,RHchangessignundernegativeVGandbecomesunambiguouslypositive,indicatinghole(h+)accumulation.ThischangeinRHisattributedtothefreezingofresidualbulkelectronsthroughcooling23.Consistentwiththeσxx–VGplot,thesheetcarrierdensityns=1/(RH|e|)increaseswithincreasingbiasinbothdirections,andeventuallyshowsapeak-likebehaviour.Weestimatethemaximumdensityofaccumulatedholestobe1.9×1015cm?2at2K,correspondingto0.44h+perWatom(hereweassumethattheholeaccumulationisconfinedwithintheThomas–Fermiscreeninglength,whichis2.6nmorabouttwounitcells).Figure2dshowsthetemperaturedependenceofsheet
resistance(Rxx–Tplot)ofthehole-accumulatedWSe2channel.At|VG|&3.75V,thechannelshowsaninsulatingbehaviourwiththenegativetemperaturedependence.Furtherincreasingtheholeaccumulation,thechannelundergoesaninsulator–metaltransitionandbecomescompletelymetallicatVG=?5.0V.Incontrast,asindicatedinFig.2e,theelectronaccumulationdoesnotleadtoanyinsulator–metaltransitionevenatVG=+4.5Vowingtotheinsufficiencyofelectronsaccumulatedattheinterface(themaximumcarrierdensityis1.4×1014cm?2at220K).Hereafter,wethusfocusonlyonthenegativeVGregion.
AsaneffectivewayofdetectingtheSOIanditsfield-effectmodulation7–10,24–26,wehaveperformedmagneto-transportmea-surementstoprobethespinrelaxationprocessesinWSe2.Figure3ashowstheVGvariationofnormalizedmagnetoconduc-tance??σ/σ(0)oftheholeaccumulatedattheEDLTinterfaceat2K.Here??σisdefinedasσ(H)?σ(H=0),withσandHbeingthesheetconductanceandthemagneticfieldappliedper-pendiculartotheinterface.For|VG|&3.0V,weobserveapositivemagnetoconductance,indicatingadominantWL.BychangingVGfrom?3.5Vto?6V,asharpmagnetoconductancepeak,initiallyappearingasaspikefeature,quicklystartstogrowaroundH=0.Theappearanceofsuchanegativecusp-likemagnetoconductancepeakatlowtemperatures(thetemperaturedependenceisdemon-stratedforVG=?4.5VinSupplementaryFig.S1)isacharacteristicfeatureoftheWALregime,whereowingtothedominanceofSOI,thecarrierstravellingalongthetime-reversedclosedloopsinterferedestructively,leadingtothequantumenhancementofconductivity.Theobservationofelectric-field-dependentWALis
NATUREPHYSICS|VOL9|SEPTEMBER2013|/naturephysics
Pt gate electrode
Ionic liquid
Sheet conductance (mS)
PotentialVG (V)
Wave-function
RH (cm2 C?1)
25ns ( 1014 cm?2)
Figure2|ElectronictransportinaWSe2EDLTwithionicliquidgating.a,SchematicstructureofatypicalWSe2EDLT.ByapplyinganegativeVGthroughaPtgateelectrode,anionsintheionicliquidareelectrostaticallydriventotheWSe2surface,formingahighlychargedelectricdoublelayer(EDL)interface.MostofpotentialdropoccursattheEDLinterfaceandalmostnopotentialisdistributedintheliquid.b,Ambipolaroperationinthetransfercharacteristics(σxxversusVG)ofWSe2EDLTs,measuredat220Kwithasource–drainvoltageVDSof0.1V.c,Hallcoef?cientRHandsheetcarrierdensityns=1/RHeobtainedfromHallmeasurementsdirectlyindicateambipolartransportoftheWSe2channel.Reddotsindicateelectronaccumulationat220K;bluedotsindicateholeaccumulationat2K.Thegraduatedshadinginbandcrepresentstheamountandtypeofaccumulatedcarriersattheinterface(blueforholeandbrownforelectronaccumulation).d,Temperature-dependentRxxundervariousnegativeVGshowsanelectric-?eld-inducedinsulator–metaltransition.e,Temperature-dependentRxxmeasuredatvariouspositiveVGforelectronaccumulation.Nometallicstateisobtainedowingtoinsuf?cientelectronaccumulation.
thusanindicationoftheelectrostaticmodulationofSOIanditsresultingspinsplitting24–29.NotethatwehaveobservedsuchacrossoverfromWLtoWALinanarrowHregime(within±0.5T).Asasignforgate-tunedspin-dependenttransport,theobservedWALpeakbecomesmorepronouncedatlargerns(higherVG),similarlytothosereportedinsemiconductorheterostructures24–29.Totracetherelationshipofnswiththecharacterizedmagnetic
fieldsH??=hˉ/(4el??)andHso=hˉ/(4elso)(wherel??=(Dτ??)1/2isthephasecoherencelength,lso=(Dτso)1/2isthespinrelaxationlengthandDisthediffusionconstant),wehaveanalysedtheobservedmagnetoconductanceusingtwodifferentlocalizationtheoriesbyIordanskii,Lyanda-GellerandPikus30(ILP)andbyMaekawaandFukuyama31(MF).AscanbeseeninFig.3b,amoderatelygoodagreementisfoundbetweentheILPtheoryandourexperimentaldata,especiallyathigh|VG|.AccordingtoFig.3c,HsoincreasesandH??decreasesasnsisincreased,andbothstarttosaturateathighns.ThisindicatestheVGtunabilityofSOIandspinprecession.TheVGdependenceofl??andlsoisshowninFig.3d.l??hasaminimumvalueofabout38nmatns=5.4×1013cm?2andincreasesto140nmatns=6×1014cm?2,implyingthatbyapproachingthemetallicstatetheholesrapidlygainlargerphasecoherence.Ontheotherhand,lsomonotonicallydecreasesasVGincreases,fromabout35nmatns=5.4×1013cm?2to15nmatns=1.9×1015cm?2.Thecrossoverbetweenthel??andlsodirectly
NATUREPHYSICS|VOL9|SEPTEMBER2013|/naturephysics
leadstotheWL–WALtransition.AnalysiswiththeMFtheory(SupplementaryFig.S3)providessimilarinformation.
SuchaWL–WALcrossoverinmagnetoconductancemayseemsimilartothatexpectedinsystemswithgate-tunedRashbaspinsplitting.However,asshowninFig.1e,whenasufficientamountofholesisdopedintoWSe2,theFermipocketsappearnotonlyaroundthe??-pointbutalsoaroundK-points.Consideringthemagnetoconductancedata,thespin-flipimpurityscattering,whichiscrucialfortheWALphenomena,tendstobestrongerforlargermomentaattheBrillouinzonecorners(Kpoints)thanforsmallermomentumatthecentreoftheBrillouinzone(??point)becauseitisproportionalto(k×k??)·σ(detailsaregivenintheSupplementaryInformation).Therefore,theobservedWALisprobablyduetothecontributionofFermipocketsaroundtheK-points,wherethespinsplittingmechanismisnotdescribablebytheRashbaeffect.
Tosupportthisscenario,wehaveperformedopticalreflectionmeasurementsonthebulk-WSe2EDLTdevices.WesummarizethemainresultshereandtheexperimentaldetailsareprovidedintheSupplementaryInformation.Withoutgating,thereisabroadpeakaround2.2eVinthedifferentialreflectionspectrum.Anotherfeaturecanalsobeseenaround1.7eV(althoughitcannotberesolvedproperlyinourmeasurementsowingtoitsweaksignal).Theseopticalfeatures,labelledasBandAexcitons,coincidereasonablywellwiththepreviouslyreportedpeaks32at
(σ (H) ? σ (0))/σ (0)
Δσ (H)/σ0
0.40.30.20.10.0
ns (×1014 cm?2)
lso (nm), lΦ (nm)
ns (×1014 cm?2)
Figure3|SOI-inducedcrossoverfromWLtoWALinWSe2EDLTs.a,Electric?eldmodulationofmagnetoconductance.AclearWL-to-WALcrossoveroccursasnegativeVGincreases.Theverticalarrowslabelled‘0.01’indicatethescaleofrelativeconductance.b,Magnetoconductance??σ/σ0?ttedusingtheILPequation.Here,σ0ise2/h.Experimentalresulblacksolidlinesindicatetheresultoftheoretical?tting.c,Fittingparameters
HsoandH??asafunctionofns.d,Spinrelaxationlengthlsoandphasecoherencelengthl??deducedfromHso,??=hˉ/4elso,??asafunctionofns.Acrossoveroflsoandl??atthelownsregimedirectlycorrespondstothetransitionfromWLtoWAL.Experimentally,lsocanbedirectlymodulatedbychangingtheinterfacialelectric?eldwithliquidgating,indicatingthetuningofspinsplittinginthebandstructure.Errorbarsinc,dcorrespondtotheuncertaintyin?ttingourmagnetoconductancedatatotheILPequation.Bluecurvesinc,dareguidestoeyes.
2.3and1.71eV,respectively.Fromfirst-principlescalculations33,theobservedAandBexcitonshavebeenassignedtotheopticaltransitionsfromtheupperandlowerbranchesofvalencebandstotheconductionbandattheK-point,respectively,asschematicallydepictedinSupplementaryFig.S4c.ByapplyinganegativeVG,boththeAandBexcitonsundergoasignificantchange.FortheBexciton,thischangeappearsasanenergysplittingofthemainpeakintotwosub-peaks.AscanbeseeninSupplementaryFig.S4c,d,theresultingenergysplittingincreasesbyincreasing|VG|.ThisaccordinglysuggeststhatVGenergeticallysplitsthevalencebandsattheK-point(SupplementaryFig.S4c).Aswillbeshownlater,thisobservationisconsistentwithourcalculations,althoughitcannotbeconsideredadirectproof.
Asthe??-pointandK-pointhavedifferentsymmetryproperties,itisimportanttoknowhowtheircorrespondingFermipocketsarespin-polarizedbyVG.Toinvestigatethis,wehaveperformedasetoffirst-principlescalculationsforsufficientlythickslabsofWSe2,exposedtoaperpendicularelectricfieldEex.Figure4a,bshowstherespectivebandstructuresfor6monolayersofWSe2,atEex=0and0.2eV??1(thedetailedevolutionofelectronicstatesunderEexisshowninSupplementaryFig.S5).Asshown,Eexcanindeedinduceahugespinsplittingamongthetopvalencebandswithanenergyorderupto~270meVinthevicinityoftheK-points.Itturnsoutthatthedx2?y2anddxystatesofWaremainlyresponsibleforsuchagiantspinsplitting,asdiscussedindetailinSupplementaryInformation.NotethatSOIcanliftspindegeneracyattheK-point
Hso (T), HΦ (T)
becauseitisnotatime-reversalk-point.Ontheotherhand,nosignificantspinsplittingcanbeseenaroundthe??-point.Wethusruleout(atleasttheoretically)thepossibilityofRashbaspinsplittinginWSe2underEex.Interestingly,theVBM,originallyspin-degeneratedandlocatedatthehigh-symmetry??pointshiftstotheK-pointatsufficientlylargeEexandbecomesfullyspin-polarized.Figure4cshowsthecalculatedFermisurfaceandtheresultingspinpolarizationpatternintheBrillouinzoneoftheWSe2surfaceforEex=0.2eV??1,assumingaFermilevellocated300meVbelowtheVBM.Ascanbeseen,aroundtheKandK??-pointsthespinpolarizationismerelyout-of-planeandZeeman-likebutwithoppositesigns.Thissignchangeisattributedtothefactthatthesek-pointsformaKramersdoublet.AsEexdoesnotbreakthetime-reversalsymmetry,thenthespinpolarizationaroundKhastobeoppositetothataroundK??.Accordingly,thisphenomenondiffersfromaconventionalZeemaneffect,wherethepresenceofmagneticfieldorimpuritiesbreaksthetime-reversalsymmetry.Notethat,assumingareasonableg-factorforWSe2,asignificantlylargeexternalmagneticfield(overseveralhundredTesla)isrequiredtogenerateaZeemanspinsplittingofthesameorder.ThecentralFermipocketaround??remainsspindegenerateevenatEex=0.2eV??1.Thus,theEex-modulatedSOIseemstoselectivelyinducespinsplittingattheK-points.
Thereasonwhythespinsplittingisabsentatthe??-pointwhereasitislargeandout-of-planeattheK-pointcanbeexplainedbythegrouptheory.Asmentionedearlier,eachmonolayerisinvariant
NATUREPHYSICS|VOL9|SEPTEMBER2013|/naturephysics
E ? EVBM (eV)
E ? EVBM (eV)
E = 0.2 eV ??1
Figure4|Effectofexternalelectric?eldonthebandstructuresofWSe2.a,b,BandstructuresofaWSe2slabwithout(a)andwith(b)theexternal
electric?eldEex=0.2eV??1.Blueandredcoloursdenotethebandswithout-of-planespin-upandspin-downpolarizations,respectively.TheVBMisatthe??-pointwithoutEex,whereasitshiftstotheK-pointunderEex.AtunableZeeman-typespinsplittingoccursattheK-point,whereasnosigni?cantspinsplittingcanbeseenaroundthe??-point.c,SpintextureoftheWSe2slabunderEex=0.2eV??1.Here,weassumethattheFermilevelislocated300meVbelowtheVBM(purpledashedlineinb).FermipocketsthatresultedfromZeeman-typespinsplittingcanclearlybeseenattheK-point.The?lledcirclesarespinspointingoutoftheplaneandcircleswithwhitecentresarespinspointinginward.
E = 0.2 eV ?-1
Energy (eV)
Energy (eV)
E = 0.2 eV ?-1
Energy (eV)
Energy (eV)
Bottom WSe2
WSe2 bilayer
Figure5|Originofout-of-planespinpolarizationinWSe2undertheexternalelectric?eld.a,b,ElectronicbandstructuresofamonolayerofWSe2under
aperpendicularelectric?eldEex=0(a)and0.2eV??1(b).Blueandreddotsrepresentspin-upandspin-down.Owingtothepresenceofthein-planeelectricdipolemoment,themonolayer’sbandstructureshowsout-of-planespinpolarization,irrespectiveoftheapplicationofEex.c,d,ElectronicbandstructuresofabilayerofWSe2underEex=0(c)and0.2eV??1(d).Cancellationofthein-planeelectricdipoleleadstotheabsenceoftheout-of-planespinpolarizationinbilayerWSe2.However,theapplicationofaperpendicularEexbreaksspatialinversionsymmetryandthusallowseachmonolayertopartiallyretainitsin-planedipolemomentleadingtoanout-of-planespinpolarizationtunablebyEex.e,Schematicsofelectric-?eldeffectonthebandstructureofbilayerWSe2.LightblueandlightredshadingcorrespondstotheelectronicstructuresintheabsenceandpresenceofEex,respectively.
NATUREPHYSICS|VOL9|SEPTEMBER2013|/naturephysics
包含总结汇报、高中教育、经管营销、教学研究、工程科技、高等教育、农林牧渔、自然科学、行业论文、旅游景点以及1_00 Nature physics 2013 - Zeeman-type spin splitting controlled by an electric field等内容。本文共2页
相关内容搜索Abstract city reflection river on sunrise. Panoramic and perspective wide angle view to steel light blue background of glass high rise building skyscraper commercial modern city of future.pastel tone.
所属分类:
用途:商业用途&&
格式:标准授权 JPG&&&&尺寸:&&&&33.9 cm×22.6 cm(300dpi)&&

标准授权扩展授权
33.9 cm22.6 cm (300dpi)
8.5 cm5.6 cm (300dpi)
17.6 cm11.7 cm (72dpi)
33.9 cm22.6 cm (300dpi)
在线支付,无需等待
专业律师护航
打开微信,使用 “扫一扫” 即可将网页分享到我的朋友圈。
能提供***和线下合同吗?+
购买后我能获得哪些授权?+
图片使用有效期是多久?+
是否提供小样图下载?+
如何下载图片?+
无法在线支付怎么办?+
图片出现版权纠纷我能得到保障吗?+
网站、博客
宣传册、画册、折页、海报
最多印刷50万份
印刷数量无限制
书籍、杂志、电子邮件、广告海报和包装
最多印刷50万份
印刷数量无限制
电视、网络视频、和电影
转售设计模板(软件/程序)或APP皮肤/主题
转售品(贺卡,明信片,日历,杯子,T恤等)
loading , 加载中,请稍后。
&标准授权商业用途允许
● 网站、博客、线上广告、推广材料
● 电子文件多媒体简报(PPT,FLASH等)
● 线下广告(杂志、报纸、目录、传单材料、优惠券等)
● 印刷品(名片、信纸、信封等)
● 企业视频广告(电视或网络)
&标准授权商业用途不允许
● 转售类商品(杯子、T恤、贺卡、日历等)
● 转售软件或应用程序的设计元素(软件、应用程序及网络分布)
● 电视广播,短片及全长度的电影制作的设计元素(道具及风景)
● 销售的屏幕保护程序
● 任何其他衍生转售对象
&扩展授权支持以上用途,请咨询***
&标准授权传媒用途允许
● 用做报纸、杂志、博客、和网站中新闻报道、评论和观点的配图
&标准授权传媒用途不允许
● 禁止用于一切商业以及转销售类用途
关注公众号 更多创意
您的密码过于简单,为了保障您的账户安全,请修改密码
找到你要找的图片了么?
&提交成功!
感谢您的建议,我们会更加努力!

参考资料

 

随机推荐