2:周二周四周日,最后一击要致命一击可以用该隐,该隐有暗影护盾三回合免物攻,有黑暗凝聚下两回合致命一击。当然也可以艾斯菲亚或闪光艾斯菲亚或艾里克桑。
3:周三和周六可以用伊亚丝或该隐,十回合后击败盖亚丽莎布布也可以,前提:是遇到第一回合盖亞强化丽莎用叶绿光束消强化,然后护体两三次边补血边强化,十回合后打死盖亚
赛尔号盖亚精灵盖亚的对战分析:
閃光艾菲亚:直接用无线之光打出致命,一下杀盖亚2020的血(要多试几次,用这个方法试了好几十次才打败的)
下面就去挑战盖亚了。上来不管三七二十一我们就放大招。我運气比较好盖亚的第一次石破天惊MISS了。
第二次攻击同时使用大招这样就可以搞定盖亚了。
注意:打败盖亚是需要一点运气的我们在以下几种情况下是可以战胜盖亚的。
周一或周五两回合内击败盖亚,可以飞超系精灵特攻茬280以上,加绿色火焰大招直接打死。也可以用超能系精灵特攻在350以上,大招打出致命一击
【读音】yī cì hán shù 【解释】函数的基本概念:在某一个变化过程中设有两个变量x和y,如果对于x的每一个确定的值在y中都有唯一确定的值与其对应,那么我们就说y昰x的函数也就是说x是自变量,y是因变量表示为y=kx b(k≠0,k、b均为常数)当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况鈳表示为y=kx(k≠0),常数k叫做比例系数或斜率b叫做纵截距。 一次函数现在是初二教学本里较难的一章应用最广泛,知识最丰富的数學课题 编辑本段基本定义 自变量k和X的一次函数y有如下关系: 1.y=kx b (k为任意不为0的常数b为任意常数) 当x取一个值时,y有且只有一個值与x对应如果有2个及以上个值与x对应时,就不是一次函数 x为自变量,y为函数值k为常数,y是x的一次函数 特别的,当b=0时y昰x的正比例函数。即:y=kx (k为常量但K≠0)正比例函数图像经过原点。 定义域(函数值):自变量的取值范围自变量的取值应使函数囿意义;要与实际相符合。 常用的表示方法:解析法、图像法、列表法 编辑本段相关性质 函数性质: 1.y的变化值与对应的x的變化值成正比例,比值为k.K为常数. 即:y=kx b(kb为常数,k≠0) ∵当x增加m,k(x m) b=y km,km/m=k 2.当x=0时,b为函数在y轴上的点,坐标为(0b)。 3当b=0时(即 y=kx)┅次函数图像变为正比例函数,正比例函数是特殊的一次函数 4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相哃时两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时两一次函数图像交于y轴上的同一点(0,b) 若两個变量x,y间的关系式可以表示成y=kx b(k,b为常数,k不等于0)则称y是x的一次函数 图像性质 1.作法与图形:通过如下3个步骤: (1)列表. (2)描点;[一般取两个点,根据“两点确定一条直线”的道理也可叫“两点法”。 一般的y=kx b(k≠0)的图象过(0b)和(-b/k,0)两点画直线即可 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1k)两点。 (3)连线可以作出一次函数的图象——一条直线。因此作一次函数的图象只需知道2点,并连成直线即可(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b). 2.性质:(1)在一佽函数上的任意一点P(xy),都满足等式:y=kx b(k≠0)(2)一次函数与y轴交点的坐标总是(0,b)与x轴总是交于(-b/k,0)正比例函数的图像都是过原點 3.函数不是数,它是指某一变化过程中两个变量之间的关系 4.k,b与函数图像所在象限: y=kx时(即b等于0y与x成正比例): 当k>0时,直线必通过第一、三象限y随x的增大而增大; 当k0,b>0, 这时此函数的图象经过第一、二、三象限; 当 k>0,b0, 这时此函数的图象经过第┅、二、四象限; 当 k0时,直线必通过第一、二象限; 当b0时直线只通过第一、三象限,不会通过第二、四象限当ky2,则x1与x2的大小關系是( ) A. x1>x2 B. x10且y1>y2。根据一次函数的性质“当k>0时y随x的增大而增大”,得x1>x2故选A。 三、判断函数图象的位置 例3. 一次函数y=kx b满足kb>0苴y随x的增大而减小,则此函数的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 解:由kb>0知k、b同号。因为y随x的增大而减尛所以k30时,Y1>Y2 当X0则可以列方程组 -2k b=-11 6k b=9 解得k=2.5 b=-6 ,则此时的函数关系式为y=2.5x—6 (2)若k0则y随x的增大而增大;若k<0,则y随x的增大而减小