最优装载,为什么js改变全局变量的值不能得到改变?...

最优装载问题_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
最优装载问题
上传于||文档简介
&&最​优​装​载​问​题
大小:5.94KB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢贪心算法解决最优装载问题_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
贪心算法解决最优装载问题
上传于||暂无简介
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩1页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢最优装载问题回溯法
最优装载问题回溯法
09-12-13 &匿名提问
一种方法:可以构建树并用回溯法求解&br&也可以考虑拆分船的载重量整数&br&
请登录后再发表评论!
在0 / 1背包问题中,需对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即n ?i=1pi xi 取得最大值。约束条件为n ?i =1wi xi≤c 和xi?[ 0 , 1 ] ( 1≤i≤n)。在这个表达式中,需求出xt 的值。xi = 1表示物品i 装入背包中,xi =0 表示物品i 不装入背包。0 / 1背包问题是一个一般化的货箱装载问题,即每个货箱所获得的价值不同。货箱装载问题转化为背包问题的形式为:船作为背包,货箱作为可装入背包的物品。例1-8 在杂货店比赛中你获得了第一名,奖品是一车免费杂货。店中有n 种不同的货物。规则规定从每种货物中最多只能拿一件,车子的容量为c,物品i 需占用wi 的空间,价值为pi 。你的目标是使车中装载的物品价值最大。当然,所装货物不能超过车的容量,且同一种物品不得拿走多件。这个问题可仿照0 / 1背包问题进行建模,其中车对应于背包,货物对应于物品。0 / 1背包问题有好几种贪婪策略,每个贪婪策略都采用多步过程来完成背包的装入。在每一步过程中利用贪婪准则选择一个物品装入背包。一种贪婪准则为:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。这种策略不能保证得到最优解。例如,考虑n=2, w=[100,10,10], p =[20,15,15], c = 1 0 5。当利用价值贪婪准则时,获得的解为x= [ 1 , 0 , 0 ],这种方案的总价值为2 0。而最优解为[ 0 , 1 , 1 ],其总价值为3 0。另一种方案是重量贪婪准则是:从剩下的物品中选择可装入背包的重量最小的物品。虽然这种规则对于前面的例子能产生最优解,但在一般情况下则不一定能得到最优解。考虑n= 2 ,w=[10,20], p=[5,100], c= 2 5。当利用重量贪婪策略时,获得的解为x =[1,0], 比最优解[ 0 , 1 ]要差。还可以利用另一方案,价值密度pi /wi 贪婪算法,这种选择准则为:从剩余物品中选择可装入包的pi /wi 值最大的物品,这种策略也不能保证得到最优解。利用此策略试解n= 3 ,w=[20,15,15], p=[40,25,25], c=30 时的最优解。我们不必因所考察的几个贪婪算法都不能保证得到最优解而沮丧, 0 / 1背包问题是一个N P-复杂问题。对于这类问题,也许根本就不可能找到具有多项式时间的算法。虽然按pi /wi 非递(增)减的次序装入物品不能保证得到最优解,但它是一个直觉上近似的解。我们希望它是一个好的启发式算法,且大多数时候能很好地接近最后算法。在6 0 0个随机产生的背包问题中,用这种启发式贪婪算法来解有2 3 9题为最优解。有5 8 3个例子与最优解相差1 0 %,所有6 0 0个***与最优解之差全在2 5 %以内。该算法能在O (nl o gn)时间内获得如此好的性能。我们也许会问,是否存在一个x (x&1 0 0 ),使得贪婪启发法的结果与最优值相差在x%以内。***是否定的。为说明这一点,考虑例子n =2, w = [ 1 ,y], p= [ 1 0 , 9y], 和c= y。贪婪算法结果为x=[1,0], 这种方案的值为1 0。对于y≥1 0 / 9,最优解的值为9 y。因此,贪婪算法的值与最优解的差对最优解的比例为( ( 9y - 1 0)/9y* 1 0 0 ) %,对于大的y,这个值趋近于1 0 0 %。但是可以建立贪婪启发式方法来提供解,使解的结果与最优解的值之差在最优值的x% (x&100) 之内。首先将最多k 件物品放入背包,如果这k 件物品重量大于c,则放弃它。否则,剩余的容量用来考虑将剩余物品按pi /wi 递减的顺序装入。通过考虑由启发法产生的解法中最多为k 件物品的所有可能的子集来得到最优解。例13-9 考虑n =4, w=[2,4,6,7], p=[6,10,12,13], c = 11。当k= 0时,背包按物品价值密度非递减顺序装入,首先将物品1放入背包,然后是物品2,背包剩下的容量为5个单元,剩下的物品没有一个合适的,因此解为x = [ 1 , 1 , 0 , 0 ]。此解获得的价值为1 6。现在考虑k = 1时的贪婪启发法。最初的子集为{ 1 } , { 2 } , { 3 } , { 4 }。子集{ 1 } , { 2 }产生与k= 0时相同的结果,考虑子集{ 3 },置x3 为1。此时还剩5个单位的容量,按价值密度非递增顺序来考虑如何利用这5个单位的容量。首先考虑物品1,它适合,因此取x1 为1,这时仅剩下3个单位容量了,且剩余物品没有能够加入背包中的物品。通过子集{ 3 }开始求解得结果为x = [ 1 , 0 , 1 , 0 ],获得的价值为1 8。若从子集{ 4 }开始,产生的解为x = [ 1 , 0 , 0 , 1 ],获得的价值为1 9。考虑子集大小为0和1时获得的最优解为[ 1 , 0 , 0 , 1 ]。这个解是通过k= 1的贪婪启发式算法得到的。若k= 2,除了考虑k& 2的子集,还必需考虑子集{ 1 , 2 } , { 1 , 3 } , { 1 , 4 } , { 2 , 3 } , { 2 , 4 }和{ 3 , 4 }。首先从最后一个子集开始,它是不可行的,故将其抛弃,剩下的子集经求解分别得到如下结果:[ 1 , 1 , 0 , 0 ] , [ 1 , 0 , 1 , 0 ] , [ 1 , 0 , 0 , 1 ] , [ 0 , 1 , 1 , 0 ]和[ 0 , 1 , 0 , 1 ],这些结果中最后一个价值为2 3,它的值比k= 0和k= 1时获得的解要高,这个***即为启发式方法产生的结果。 这种修改后的贪婪启发方法称为k阶优化方法(k - o p t i m a l)。也就是,若从***中取出k 件物品,并放入另外k 件,获得的结果不会比原来的好,而且用这种方式获得的值在最优值的( 1 0 0 / (k + 1 ) ) %以内。当k= 1时,保证最终结果在最佳值的5 0 %以内;当k= 2时,则在3 3 . 3 3 %以内等等,这种启发式方法的执行时间随k 的增大而增加,需要测试的子集数目为O (nk ),每一个子集所需时间为O (n),因此当k &0时总的时间开销为O (nk+1 )。实际观察到的性能要好得多。
数据结构原来我就没学明白,FT
如果不考虑时间因素,这个问题可以直接通过完全搜索解决(使用贪心的优化存在一个错误的假设)。大致思路如下:初始状态:  bag_weight 背包空 0            bag_max    背包容积 max            item_list  物品序列 {a,b,c,d,e...}目标状态:            min(bag_max-sum(item_list)) //取item_list,且bag_max-sum(item_list)&0,就是找出能使背包最大容积与装入物品容积的最小差值的物品组合采用递规算法:findseq(int * select_item){           ......           if(bag_max-sum(select_item) & 0) //包已满,终止条件           add(new_item,select_item)  //添加新的物品           findseq(select_item);      //递规           .....}&br/&&br/&&font color=#0556A3&参考文献:&/font&d
如果不考虑时间因素,这个问题可以直接通过完全搜索解决(使用贪心的优化存在一个错误的假设)。大致思路如下:初始状态: bag_weight 背包空 0bag_max 背包容积 maxitem_list 物品序列 {a,b,c,d,e...}目标状态:min(bag_max-sum(item_list)) //取item_list,且bag_max-sum(item_list)&0,就是找出能使背包最大容积与装入物品容积的最小差值的物品组合采用递规算法:findseq(int * select_item){......if(bag_max-sum(select_item) & 0) //包已满,终止条件add(new_item,select_item) //添加新的物品findseq(select_item); //递规.....
请登录后再发表评论!

参考资料

 

随机推荐