pa出散失怎么样?配合粉身碎骨的意思,B上去切对...

问题分类:初中英语初中化学初中语文
当前位置: >
(2012o陕西)如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.
(1)求证:OM=AN;
(2)若⊙O的半径R=3,PA=9,求OM的长.
悬赏雨点:10 学科:【】
(1)证明:如图,连接OA,则OA⊥AP,
∵MN⊥AP,
∴MN∥OA,
∵OM∥AP,
∴四边形ANMO是矩形,
(2)解:连接OB,则OB⊥BP
∵OA=MN,OA=OB,OM∥AP.
∴OB=MN,∠OMB=∠NPM.
∴Rt△OBM≌Rt△NPM,
设OM=x,则NP=9-x,
在Rt△MNP中,有x2&=32&+(9-x)2&
∴x=5,即OM=5.
&&获得:10雨点
暂无回答记录。> 【***带解析】如图,PA、PB、DE切⊙O于点A、B、C、D在PA上,E在PB上, (1)若P...
如图,PA、PB、DE切⊙O于点A、B、C、D在PA上,E在PB上,(1)若PA=10,求△PDE的周长.(2)若∠P=50&,求∠O度数.
(1)于PA、PB、DE都是⊙O的切线,可根据切线长定理将切线PA、PB的长转化为△PDE的周长;
(2)连接OA、OC、0B,利用切线长定理即可得到∠O=∠AOB,根据四边形的内角和可得∠AOB+∠P=180°,进而求出∠O的度数.
(1)∵PA、PB、DE分别切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C△PDE=PD+DE+PE=PD+DA+EB+PE...
考点分析:
考点1:切线的性质
(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(3)切线性质的运用由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
考点2:切线长定理
(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.
相关试题推荐
设x1,x2是方程2x2+4x-3=0的两个根,求下列各式:(1);&;& (3).
已知x=1是关于x的一元二次方程2x2+kx-1=0的一个根,则实数k的值是&&& .
如图,求三角形ABC中,AB=5,BC=3,求沿着BC边旋转一周得到的图形的侧面积.
(2x+1)2=6x+3.
题型:解答题
难度:中等
Copyright @
满分5 学习网 . All Rights Reserved.当前位置:
>>>如图:PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中错误的是[]A...
如图:PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中错误的是
A.∠APO=∠BPOB.PA=PBC.AB⊥OPD.C是PO的中点
题型:单选题难度:中档来源:广西自治区期末题
马上分享给同学
据魔方格专家权威分析,试题“如图:PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中错误的是[]A...”主要考查你对&&直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离),等腰三角形的性质,等腰三角形的判定&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)等腰三角形的性质,等腰三角形的判定
直线与圆的位置关系:直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。 (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d&r; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d&r。(d为圆心到直线的距离)直线与圆的三种位置关系的判定与性质: (1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定, 如果⊙O的半径为r,圆心O到直线l的距离为d,则有: 直线l与⊙O相交d&r; 直线l与⊙O相切d=r; 直线l与⊙O相离d&r; (2)公共点法:通过确定直线与圆的公共点个数来判定。 直线l与⊙O相交d&r2个公共点; 直线l与⊙O相切d=r有唯一公共点; 直线l与⊙O相离d&r无公共点 。圆的切线的判定和性质&&& (1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 (2)切线的性质定理:圆的切线垂直于经过切点的半径。 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。 直线与圆的位置关系判定方法:平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程如果b2-4ac&0,则圆与直线有2交点,即圆与直线相交。如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。如果b2-4ac&0,则圆与直线有0交点,即圆与直线相离。2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2。令y=b,求出此时的两个x值x1、x2,并且规定x1&x2,那么:& 当x=-C/A&x1或x=-C/A&x2时,直线与圆相离;当x1&x=-C/A&x2时,直线与圆相交。&定义:有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 等腰三角形的性质:1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。4.等腰三角形底边上的垂直平分线到两条腰的距离相等。5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。8.等腰三角形中腰的平方等于高的平方加底的一半的平方9.等腰三角形中腰大于高10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)等腰三角形的判定:1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
发现相似题
与“如图:PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中错误的是[]A...”考查相似的试题有:
150747901756147049138683147972151132

参考资料

 

随机推荐