nim游戏变形与SG函数

&&国之画&&&& &&&&&&
&& &&&&&&&&&&&&&&&&&&&&
鲁ICP备号-4
打开技术之扣,分享程序人生!ACM学习(10)
Nim游戏定义
Nim游戏是组合游戏(Combinatorial Games)的一种,准确来说,属于“Impartial Combinatorial Games”(以下简称ICG)。满足以下条件的游戏是ICG(可能不太严谨):1、有两名选手;2、两名选手交替对游戏进行移动(move),每次一步,选手可以在(一般而言)有限的合法移动集合中任选一种进行移动;3、对于游戏的任何一种可能的局面,合法的移动集合只取决于这个局面本身,不取决于轮到哪名选手操作、以前的任何操作、骰子的点数或者其它什么因素; 4、如果轮到某名选手移动,且这个局面的合法的移动集合为空(也就是说此时无法进行移动),则这名选手负。根据这个定义,很多日常的游戏并非ICG。例如象棋就不满足条件3,因为红方只能移动红子,黑方只能移动黑子,合法的移动集合取决于轮到哪名选手操作。
通常的Nim游戏的定义是这样的:有若干堆石子,每堆石子的数量都是有限的,合法的移动是“选择一堆石子并拿走若干颗(不能不拿)”,如果轮到某个人时所有的石子堆都已经被拿空了,则判负(因为他此刻没有任何合法的移动)。
N-position,P-position
定义P-position和N-position,其中P代表Previous,N代表Next。直观的说,上一次move的人有必胜策略的局面是P-position,也就是“后手可保证必胜”或者“先手必败”,现在轮到move的人有必胜策略的局面是N-position,也就是“先手可保证必胜”。更严谨的定义是:1.无法进行任何移动的局面(也就是terminal position)是P-position;2.可以移动到P-position的局面是N-position;3.所有移动都导致N-position的局面是P-position。
所以对于当前的局面,递归计算它的所有子局面的性质,如果存在某个子局面是P-position,那么向这个子局面的移动就是必胜策略。
对于某个Nim游戏的局面(a1,a2,…,an)来说,要想判断它的性质以及找出必胜策略,需要计算O(a1*a2*…*an)个局面的性质。
Bouton’s Theorem
对于一个Nim游戏的局面(a1,a2,…,an),它是P-position当且仅当a1^a2^…^an=0,其中^表示异或(xor)运算。
根据定义,证明一种判断position的性质的方法的正确性,只需证明三个命题:
1、这个判断将所有terminal position判为P-position;
2、根据这个判断被判为N-position的局面一定可以移动到某个P-position;
3、根据这个判断被判为P-position的局面无法移动到某个P-position。
第一个命题显然,terminal position只有一个,就是全0,异或仍然是0。
第二个命题,对于某个局面(a1,a2,…,an),若a1^a2^…^an!=0,一定存在某个合法的移动,将ai改变成ai’后满足a1^a2^…^ai’^…^an=0。不妨设a1^a2^…^an=k,则一定存在某个ai,它的二进制表示在k的最高位上是1(否则k的最高位那个1是怎么得到的)。这时ai^k& ai一定成立。则我们可以将ai改变成ai’=ai^k,此时a1^a2^…^ai’^…^an=a1^a2^…^an^k=0。
第三个命题,对于某个局面(a1,a2,…,an),若a1^a2^…^an=0,一定不存在某个合法的移动,将ai改变成ai’后满足a1^a2^…^ai’^…^an=0。因为异或运算满足消去率,由a1^a2^…^an=a1^a2^…^ai’^…^an可以得到ai=ai’。所以将ai改变成ai’不是一个合法的移动。证毕。
根据这个定理,我们可以在O(n)的时间内判断一个Nim的局面的性质,且如果它是N-position,也可以在O(n)的时间内找到所有的必胜策略。Nim问题就这样基本上完美的解决了。
Sprague-Grundy 函数
给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移动者判负。事实上,这个游戏可以认为是所有Impartial Combinatorial Games的抽象模型。也就是说,任何一个ICG都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”。下面我们就在有向无环图的顶点上定义Sprague-Garundy函数。
SG函数性质
首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Garundy函数g如下:g(x)=mex{ g(y) | y是x的后继 }。
来看一下SG函数的性质。首先,所有的terminal position所对应的顶点,也就是没有出边的顶点,其SG值为0,因为它的后继集合是空集。然后对于一个g(x)=0的顶点x,它的所有后继y都满足g(y)!=0。对于一个g(x)!=0的顶点,必定存在一个后继y满足g(y)=0。
SG函数用途
以上这三句话表明,顶点x所代表的postion是P-position当且仅当g(x)=0(跟P-positioin/N-position的定义的那三句话是完全对应的)。我们通过计算有向无环图的每个顶点的SG值,就可以对每种局面找到必胜策略了。但SG函数的用途远没有这样简单。如果将有向图游戏变复杂一点,比如说,有向图上并不是只有一枚棋子,而是有n枚棋子,每次可以任选一颗进行移动,这时,怎样找到必胜策略呢?
让我们再来考虑一下顶点的SG值的意义。当g(x)=k时,表明对于任意一个0&=i& k,都存在x的一个后继y满足g(y)=i。也就是说,当某枚棋子的SG值是k时,我们可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。不知道你能不能根据这个联想到Nim游戏,Nim游戏的规则就是:每次选择一堆数量为k的石子,可以把它变成0、变成1、,,,,、变成k-1,但绝对不能保持k不变。这表明,如果将n枚棋子所在的顶点的SG值看作n堆相应数量的石子,那么这个Nim游戏的每个必胜策略都对应于原来这n枚棋子的必胜策略!
刚才,我们为了使问题看上去更容易一些,认为n枚棋子是在一个有向图上移动。但如果不是在一个有向图上,而是每个棋子在一个有向图上,每次可以任选一个棋子(也就是任选一个有向图)进行移动,这样也不会给结论带来任何变化。
所以我们可以定义有向图游戏的和(Sum of Graph Games):设G1、G2、,,,,、Gn是n个有向图游戏,定义游戏G是G1、G2、……、Gn的和(Sum),游戏G的移动规则是:任选一个子游戏Gi并移动上面的棋子。
Sprague-Grundy Theorem就是:g(G)=g(G1)^g(G2)^,,^g(Gn)。也就是说,游戏的和的SG函数值是它的所有子游戏的SG函数值的异或。
再考虑在本文一开头的一句话:任何一个ICG都可以抽象成一个有向图游戏。所以“SG函数”和“游戏的和”的概念就不是局限于有向图游戏。我们给每个ICG的每个position定义SG值,也可以定义n个ICG的和。所以说当我们面对由n个游戏组合成的一个游戏时,只需对于每个游戏找出求它的每个局面的SG值的方法,就可以把这些SG值全部看成Nim的石子堆,然后依照找Nim的必胜策略的方法来找这个游戏的必胜策略了!
SG函数代码模板
int sg[N];
bool vis[N];
void sg_solve(int *s,int t,int N)
memset(sg,0,sizeof(sg));
for(i=1;i&=N;i++)
memset(vis,0,sizeof(vis));
for(j=0;j&t;j++)
if(i - s[j] &= 0)
vis[sg[i-s[j]]] = 1;
for(j=0;j&=N;j++)
if(!vis[j])
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:1507次
排名:千里之外
原创:24篇
(2)(6)(1)(2)(1)(1)(3)(16)推荐这篇日记的豆列结合游戏 - SG函数和SG定理 - 编程当前位置:& &&&结合游戏 - SG函数和SG定理结合游戏 - SG函数和SG定理&&网友分享于:&&浏览:0次组合游戏 - SG函数和SG定理&&&&&&& 在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧.
必胜点和必败点的概念:
&&&&&& P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
&&&&&& N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
必胜点和必败点的性质:
&&&&&&&&1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
&&&&&&& 2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
&&&&&&& 3、无论如何操作,必败点P 都只能进入 必胜点 N。
我们研究必胜点和必败点的目的时间为题进行简化,有助于我们的分析。通常我们分析必胜点和必败点都是以终结点进行逆序分析。我们以hdu 1847 Good Luck in CET-4 Everybody!为例:
当 n = 0 时,显然为必败点,因为此时你已经无法进行操作了
当 n = 1 时,因为你一次就可以拿完所有牌,故此时为必胜点
当 n = 2 时,也是一次就可以拿完,故此时为必胜点
当 n = 3 时,要么就是剩一张要么剩两张,无论怎么取对方都将面对必胜点,故这一点为必败点。
以此类推,最后你就可以得到;
&&&&& n&&&&:&& 0&&& 1&&&&2&&& 3&&& 4&& 5&&& 6 ...
position:&&P&&&&N&& N&&& P&& N&& N&& P ...
你发现了什么没有,对,他们就是成有规律,使用了 P/N来分析,有没有觉得问题变简单了。
现在给你一个稍微复杂一点点的:
hdu 2147 kiki's game
&&&&&&& 现在我们就来介绍今天的主角吧。组合游戏的和通常是很复杂的,但是有一种新工具,可以使组合问题变得简单--------SG函数和SG定理。
Sprague-Grundy定理(SG定理):
&&&&&& &游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。不知道Nim游戏的请移步:这里
&&&&&&& 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
&&&&&&& 对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为&SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。&这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。
【实例】取石子问题
有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?
SG[0]=0,f[]={1,3,4},
x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;
x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;
x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;
x=4 时,可以取走4- &f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;
x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;
以此类推.....
&& x&&&&&&&&0& 1& 2& 3& 4& 5& 6& 7& 8....
SG[x]&&&&0& 1& 0& 1& 2& 3& 2& 0& 1....
由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:
1、使用 数组f 将 可改变当前状态 的方式记录下来。
2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。
3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。
4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。
代码实现如下:
//f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
//SG[]:0~n的SG函数值
//S[]:为x后继状态的集合
int f[N],SG[MAXN],S[MAXN];
getSG(int n){
memset(SG,0,sizeof(SG));
//因为SG[0]始终等于0,所以i从1开始
for(i = 1; i &= i++){
//每一次都要将上一状态 的 后继集合 重置
memset(S,0,sizeof(S));
for(j = 0; f[j] &= i && j &= N; j++)
S[SG[i-f[j]]] = 1;
//将后继状态的SG函数值进行标记
for(j = 0;; j++) if(!S[j]){
//查询当前后继状态SG值中最小的非零值
现在我们来一个实战演练(题目链接):
&&&&&& 只要按照上面的思路,解决这个就是分分钟的问题。
代码如下:
#include &stdio.h&
#include &string.h&
#define MAXN 1000 + 10
#define N 20
int f[N],SG[MAXN],S[MAXN];
void getSG(int n){
memset(SG,0,sizeof(SG));
for(i = 1; i &= i++){
memset(S,0,sizeof(S));
for(j = 0; f[j] &= i && j &= N; j++)
S[SG[i-f[j]]] = 1;
for(j = 0;;j++) if(!S[j]){
int main(){
int n,m,k;
f[0] = f[1] = 1;
for(int i = 2; i &= 16; i++)
f[i] = f[i-1] + f[i-2];
getSG(1000);
while(scanf(&%d%d%d&,&m,&n,&k),m||n||k){
if(SG[n]^SG[m]^SG[k]) printf(&Fibo\n&);
else printf(&Nacci\n&);
大家是不是还没有过瘾,那我就在给大家附上一些组合博弈的题目:
POJ 2234 Matches Game
HOJ 2533 Stone II
POJ 2975 Nim
HOJ 1367 A Stone Game
POJ 2505 A multiplication game
ZJU 3057 beans game
POJ 1067 取石子游戏
POJ 2484 A Funny Game
POJ 2425 A Chess Game
POJ 2960 S-Nim
POJ 1704 Georgia and Bob
POJ 1740 A New Stone Game
POJ 2068 Nim
POJ 3480 John
POJ 2348 Euclid's Game
HOJ 2645 WNim
POJ 3710 Christmas Game
POJ 3533 Light Switching Game
(如有错误,欢迎指正,转载注明出处)


12345678910
12345678910
12345678910 上一篇:下一篇:文章评论相关解决方案 1234567891011 Copyright & &&版权所有

参考资料

 

随机推荐