当前位置:
>>>三个连续奇数的和为57,则这三个数分别为:______.-数学-魔方格
三个连续奇数的和为57,则这三个数分别为:______.
题型:填空题难度:中档来源:不详
设中间的奇数是x,则这3个连续的奇数分别为x-2,x,x+2,由题意得,x-2+x+x+2=57解得:x=19,则x-2=19-2=17,x+2=19+2=21,即这三个数分别是17、19、21.故***为:17、19、21.
马上分享给同学
据魔方格专家权威分析,试题“三个连续奇数的和为57,则这三个数分别为:______.-数学-魔方格”主要考查你对&&一元一次方程的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
一元一次方程的应用
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。列一元一次方程解应用题的一般步骤:列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:&⑴审题:理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。&&⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系; ①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。&&⑶用含未知数的代数式表示相关的量。&&⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。&&⑸解方程及检验。&&⑹答题。&&综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出***)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。一元一次方程应用题型及技巧:列方程解应用题的几种常见类型及解题技巧: (1)和差倍分问题: ①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。 (2)行程问题: 基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间, 路程=速度×时间。 ①相遇问题:快行距+慢行距=原距; ②追及问题:快行距-慢行距=原距; ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度, 逆水(风)速度=静水(风)速度-水流(风)速度 例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? 两车同时开出,相背而行多少小时后两车相距600公里? 两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? 两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? 慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。) 323
(3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。 这类问题要搞清人数的变化。例.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?(4)工程问题: 三个基本量:工作量、工作时间、工作效率; 其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。 例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(5)利润问题: 基本关系:①商品利润=商品售价-商品进价; ②商品利润率=商品利润/商品进价×100%; ③商品销售额=商品销售价×商品销售量; ④商品的销售利润=(销售价-成本价)×销售量。 ⑤商品售价=商品标价×折扣率例.例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少? (6)数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a, 百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。 数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n--2表示;奇数用2n+1或2n--1表示。例:有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。(7)盈亏问题:“盈”表示分配中的多余情况;“亏”表示不足或缺少部分。 (8)储蓄问题:其数量关系是:利息=本金×利率×存期;:(注意:利息税)。 本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。&(9)溶液配制问题:其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。&
(10)比例分配问题:&这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。&还有劳力调配问题、配套问题、年龄问题、比赛积分问题、增长率问题等都会有涉及。
发现相似题
与“三个连续奇数的和为57,则这三个数分别为:______.-数学-魔方格”考查相似的试题有:
541867157979529544167658922524231101三个连续奇数的和为57,则这三个数分别为:______.
设中间的奇数是x,则这3个连续的奇数分别为x-2,x,x+2,由题意得,x-2+x+x+2=57解得:x=19,则x-2=19-2=17,x+2=19+2=21,即这三个数分别是17、19、21.故***为:17、19、21.
为您推荐:
其他类似问题
设中间的奇数是x,则这3个连续的奇数分别为x-2,x,x+2,然后根据题意列出方程解答即可.
本题考点:
一元一次方程的应用.
考点点评:
本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
17、19、21、
设这三个奇数为 x-2
x+2所以3x=57x=19所以可知这三个奇数为17 19 21
分别为17,19,21
分别:17、19、21
扫描下载二维码3个连续偶数和为S,那么这三个偶数是多少
坏人wan702
这是一个一元一次方程的题目:我们可以设第一个偶数为x,那么x后的连续偶数为x+2、x+4.得到方程为:x+(x+2)+(x+4)=s解方程得:x=s/3-2所以这三个连续偶数为s/3-2、s/3和s/3+2.
为您推荐:
其他类似问题
扫描下载二维码三个连续偶数的和是18,这三个偶数分别是哪三个数。
丨战狂丨灬霸刀
这三个数是:4
你的回答完美的解决了我的问题,谢谢!
为您推荐:
分别是4,6,8
扫描下载二维码判断1+3+5+7+.+55+57的和是奇数还是偶数,请说明理由.
根据等差数列求和公式,数列的和为:S=n*1+n(n-1)d/2d=2,对于57,可求得n=29则有S=29+29(29-1)=29*29其尾数为1显然级数和为奇数.
嗯...有点不理解,本人没学过这个...
1+3+5+7+9=27
11+13+..+19 ,其尾数同样为7
同理21~29,31~39,41~49,
对于51~57,尾数的和的尾数1+3+5+7=16
综合上述尾数的和为:7+7+7+7+7+6=35+6=41
显然尾数是奇数。
这样说你是不是就很好理解了?
为您推荐:
其他类似问题
1=2*1-13=2*2-1...57=2*29-1所以原式为29个奇数之和,为奇数
1到57一共29个数,29个奇数和是奇数
扫描下载二维码