关于点斜式斜截式两点式和两点式的选择。

All Rights Reserved 上传我的文档
 下载
 收藏
免责声明:1,本账号发布文档来源于互联网和个人收集,仅用于技术分享交流用,版权为原作者所有。 2,文档内容纯属来自网络意见,与本账号立场无关。涉及政治言论一律相应删除,请大家监督。 3. 本账号发布文档均来源于个人收集和互联网,仅用于分享、学习、交流等使用.如在使用下载、浏览过程中出现问题,请及时站内留言或留下信箱等联系方式. 4. 本人不对文档合法性承担任何法律责任。 5. 如有文档存在侵权行为请告知,经核实将予以删除. 6,如有侵犯原您的版权,请提出指正,我们将立即删除相关资料有其它问题也欢迎与本人联系
 下载此文档
正在努力加载中...
(点斜式、两点式及一般式)了解斜截式与一次函数的关系)
下载积分:2500
内容提示:(点斜式、两点式及一般式)了解斜截式与一次函数的关系)
文档格式:PPT|
浏览次数:24|
上传日期: 11:45:12|
文档星级:
全文阅读已结束,如果下载本文需要使用
 2500 积分
下载此文档
该用户还上传了这些文档
(点斜式、两点式及一般式)了解斜截式与一次函数的关系)
官方公共微信当前位置:
>>>写出过两点A(5,0)、B(0,-3)的直线方程的两点式、点斜式、斜截式..
写出过两点A(5,0)、B(0,-3)的直线方程的两点式、点斜式、斜截式、截距式和一般式方程.
题型:解答题难度:中档来源:不详
两点式方程:y-(-3)x-0=0-(-3)5-0;点斜式方程:y-(-3)=0-(-3)5-0(x-0),即y-(-3)=35(x-0);斜截式方程:y=0-(-3)5-0ox-3,即y=35ox-3;截距式方程:x5+y-3=1;一般式方程:3x-5y-15=0.
马上分享给同学
据魔方格专家权威分析,试题“写出过两点A(5,0)、B(0,-3)的直线方程的两点式、点斜式、斜截式..”主要考查你对&&直线的方程&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
直线的方程
直线方程的定义:
以一个方程的解为坐标的点都是某条直线上的点,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。
基本的思想和方法:
求直线方程是解析几何常见的问题之一,恰当选择方程的形式是每一步,然后?用待定系数法确定方程,在求直线方程时,要注意斜率是否存在,利用截距式时,不能忽视截距为0的情形,同时要区分“截距”和“距离”。
直线方程的几种形式:
1.点斜式方程:(1),(直线l过点,且斜率为k)。(2)当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示,但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 2.斜截式方程:已知直线在y轴上的截距为b和斜率k,则直线的方程为:y=kx+b,它不包括垂直于x轴的直线。 3.两点式方程:已知直线经过(x1,y1),(x2,y2)两点,则直线方程为:4.截距式方程:已知直线在x轴和y轴上的截距为a,b,则直线方程为:(a、b≠0)。5.一般式方程:(1)定义:任何直线均可写成:Ax+By+C=0(A,B不同时为0)的形式。(2)特殊的方程如:平行于x轴的直线:y=b(b为常数);平行于y轴的直线:x=a(a为常数)。 几种特殊位置的直线方程:
求直线方程的一般方法:
(1)直接法:根据已知条件,选择适当的直线方程形式,直接求出直线方程.应明确直线方程的几种形式及各自的特点,合理选择解决方法,一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知在两坐标轴上的截距用截距式;已知两点用两点式,这时应特别注意斜率不存在的情况.(2)待定系数法:先设出直线的方程,再根据已知条件求出假设系数,最后代入直线方程,待定系数法常适用于斜截式,已知两点坐标等.利用待定系数法求直线方程的步骤:①设方程;②求系数;③代入方程得直线方程,如果已知直线过一个定点,可以利用直线的点斜式求方程,也可以利用斜截式、截距式等形式求解.
发现相似题
与“写出过两点A(5,0)、B(0,-3)的直线方程的两点式、点斜式、斜截式..”考查相似的试题有:
753650807396473697446145557373483433

参考资料

 

随机推荐