2015年湖北省咸宁市中考数学试题及解析_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
2015年湖北省咸宁市中考数学试题及解析
上传于||文档简介
&&中考试题
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩21页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢如图,已知三角形ABC中,∠ABC=90°,点M为BC上一点,点E、N在AC上,且EB=EM,MN_百度拇指医生
&&&网友互助
?如图,已知三角形ABC中,∠ABC=90°,点M为BC上一点,点E、N在AC上,且EB=EM,MN
拇指医生提醒您:该问题下为网友贡献,仅供参考。
=NC,过B作BG∥MN交EM于G,当BM:CM=1:2时,求BG:MN。
延长BG交AC于F点,因为BG∥MN,所以∠2=∠3,因为BM:MC=1:2,所以MN:BF=2:3,即(BG+GF):MN=3:2。又因为NM=NC,所以AC=3CN,因为EB=EM,所以AC=6AE,所以EN=1/2AC,因为NM=NC,所以∠3=∠C,所以∠2=∠C,又∠1+∠2=90,∠C+∠A=90,所以∠1=∠A,所以BF=AF=CF,所以GF:MN=EF:FN=2:3。所以BG:MN=5:6
向医生提问
完善患者资料:*性别:
为您推荐:
* 百度拇指医生解答内容由公立医院医生提供,不代表百度立场。
* 由于网上问答无法全面了解具体情况,回答仅供参考,如有必要建议您及时当面咨询医生无锡市2015年中考数学试题解析
您现在的位置:&&>>&&>>&&>>&&>>&&>>&正文
无锡市2015年中考数学试题解析
作者:佚名 资料来源:网络 点击数: &&&
无锡市2015年中考数学试题解析
本资料为WORD文档,请点击下载地址下载
文章来源莲 山课件 w ww.5 Y
无锡市2015年中考数学试题一、1.-3的倒数是&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& (&& )A.3&&&&&&& &B.±3&&& &C.13& &D.-13考点:倒数..分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是 ,故选D点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.函数y=x-4中自变量x的取值范围是&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& (&& )&&& A.x>4&&&&&&&&&& B.x≥4&&&&&&&&&&& C.x≤4&&&&&&&&&& D.x≠4考点:函数自变量的取值范围..分析:因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣4≥0,可求x的范围.解答:解:x﹣4≥0解得x≥4,故选:B.点评:此题主要考查函数自变量的取值范围,解决本题的关键是当函数表达式是二次根式时,被开方数为非负数.3.今年江苏省参加高考的人数约为393 000人,这个数据用科学记数法可表示为&&&&&&&& (&& )A.393×103&&&&&& B.3.93×103&&&&&&& C.3.93×105&&&&&& D.3.93×106考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:.93×105,故选C.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.4.方程2x-1=3x+2的解为&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& (&& )A.x=1&&&&&&&&&& B.x=-1&&&&&&&&& C.x=3&&&&&&&&&&&&&&& D.x=-3考点:解一元一次方程..分析:方程移项合并,把x系数化为1,即可求出解.解答:解:方程2x﹣1=3x+2,移项得:2x﹣3x=2+1,合并得:﹣x=3.解得:x=﹣3,故选D.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.5.若点A(3,-4)、B(-2,m)在同一个反比例函数的图像上,则m的值为&&&&&&&&&&&&& (&& )&& A.6&&&&&&&&&&&&& B.-6&&&&&&&&&&&& C.12&&&&&&&&&&&& D.-12考点:反比例函数图象上点的坐标特征..分析:反比例函数的解析式为y= ,把A(3,﹣4)代入求出k=﹣12,得出解析式,把B的坐标代入解析式即可.解答:解:设反比例函数的解析式为y= ,把A(3,﹣4)代入得:k=﹣12,即y=﹣ ,把B(﹣2,m)代入得:m=﹣ =6,故选A.点评:本题考查了反比例函数图象上点的坐标特征的应用,解此题的关键是求出反比例函数的解析式,难度适中.6.下列图形中,是轴对称图形但不是中心对 称图形的是&&&&&&&&&&&&&&&&&&&&&&&&&&&&& (&& )A.等边三角形&&&& B.平行四 边形&&&&& C.矩形&&&&&&&&&& D.圆考点:中心对称图形;轴对称图形..分析:根据轴对称图形和中心对称图形的概念以及等边三角形、平行四边形、矩形、圆的性质解答.解答:解:A、只是轴对称图形,不是中心对称图形,符合题意;B、只是中心对称图形,不合题意;C、D既是轴对称图形又是中心对称图形,不合题意.故选A.点评:掌握好中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,两边图象折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后重合.7.tan45&的值为&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& (&& )&&& A.12&&&&&&&&&&&&& B.1&&&&&&&&&&&&&& C.22&&&&&&&&&&&& D.2考点:特殊角的三角函数值..分析:根据45°角这个特殊角的三角函数值,可得tan45°=1,据此解答即可.解答:解:tan45°=1,即tan45°的值为1.故选:B.点评:此题主要考查了特殊角的三角函数值,要熟练掌握,解答此类问题的关键是牢记30°、45°、60°角的各种三角函数值.8.八边形的内角和为&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& (&& )&&& A.180&&&&&&&&&&& B.360&&&&&&&&&&&&& C.1080&&&&&&&&&&& D.1440&考点:多边形内角与外角..分析:根据多边形的内角和公式(n﹣2)°进行计算即可得解.解答:解:(8﹣2)°=6×180°=1080°.故选:C.点评:本题考查了多边形的内角和,熟记内角和公式是解题的关键.
9.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& (&& )
考点:几何体的展开图..分析:根据正方体的表面展开图进行分析解答即可.解答:解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件,故选D点评:本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.
10.如图,Rt△ABC中,∠ACB=90&,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ( ▲ )A.35&&&&&&&&&& B.45&&&&&&&&&& C.23&&&&&&&&&&&& D.32考点:翻折变换(折叠问题)..分析:首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF= ,ED=AE ,从而求得B′D=1,DF= ,在Rt△B′DF中,由勾股定理即可求得B′F的长.解答:解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC= AC•BC= AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE= ,∴EF= ,ED=AE= = ,∴DF=EF﹣ED= ,∴B′F= = .故选B.点评:此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.二、题11.***因式:8-2x2=&&&&& .考点:提公因式法与公式法的综合运用..分析:先提取公因式,再根据平方差公式进行***即可.解答:解:原式=2(4﹣x2)=2(2+x) (2﹣x).故***为:2(2+x) (2﹣x).点评:本题考查的是提取公因式法与公式法的综合运用,熟记平方差公式是解答此题的关键.12.化简2x+6x2-9得&&&&& .考点:约分..分析:首先分别把分式的分母、分子因式***,然后约去分式的分子与分母的公因式即可.解答:解: = = 故***为: .点评:此题主要考查了约分问题,要熟练掌握,解答此题的关键是要明确:①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先***因式.13.一次函数y=2x-6的图像与x轴的交点坐标为&&&&& .考点:一次函数图象上点的坐标特征..分析:一次函数y=2x﹣6的图象与x轴的交点的纵坐标等于零,所以把y=0代入已知函数解析式即可求得相应的x的值.解答:解:令y=0得:2x﹣6=0,解得:x=3.则函数与x轴的交点坐标是(3,0).故***是:(3,0).点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.14.如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于&&&&& cm.
考点:中点四边形..分析:连接AC、BD,根据三角形的中位线求出HG、GF、EF、EH的长,再求出四边形EFGH的周长即可.解答:解:如图,连接C、BD,&∵四边形ABCD是矩形,∴AC=BD=8cm,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴HG=EF= AC=4cm,EH=FG= BD=4cm,∴四边形EFGH的周长等于4cm+4cm+4cm+4cm=16cm,故***为:16.点评:本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.15.命题“全等三角形的面积相等”的逆命题是&&&&& 命题.(填“真”或“假”)考点:命题与定理..分析:把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,如果能就是真命题.解答:解:“全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,根据全等三角形的定义,不符合要求,因此是假命题.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.16.某种蔬菜按品质分成三个等级销售,销售情况如下表:等级&单价(元/千克)&销售量(千克)一等&5.0&20二等&4.5&40三等&4.0&40
&&& 则售出蔬菜的平均单价为&&&&& 元/千克.考点:加权平均数..分析:利用售出蔬菜的总价÷售出蔬菜的总数量=售出蔬菜的平均单价,列式解答即可.解答:解:(5×20+4.5×40+4×40)÷(20+40+40)=(100+180+160)÷100=440÷100=4.4(元/千克)答:售出蔬菜的平均单价为4.4元/千克.故***为:4.4.点评:此题考查加权平均数的求法,利用总数÷总份数=平均数列式解决问题.&17.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于&&&&& .
考点:三角形中位线定理;勾股定理..专题:.分析:延长AD至F,使DF=AD,过点F作平行BE与AC延长线交于点G,过点C作CH∥BE,交AF于点H,连接BF,如图所示,在直角三角形AGF中,利用勾股定理求出AG的长,利用SAS证得△BDF≌△CDA,利用全等三角形对应角相等得到∠ACD=∠BFD,证得AG∥BF,从而证得四边形EBFG是平行四边形,得到FG=BE=6,利用AAS得到三角形BOD与三角形CHD全等,利用全等三角形对应边相等得到OD=DH=3,得出AH=9,然后根据△AHC∽△AFG,对应边成比例即可求得AC.解答:解:延长AD至F,使DF=AD,过点F作FG∥BE与AC延长线交于点G,过点C作CH∥BE,交AF于点H,连接BF,如图所示,在Rt△AFG中,AF=2AD=12,FG=BE=6,根据勾股定理得:AG= =6 ,在△BDF和△CDA中,&∴△BDF≌△CDA(SAS),∴∠ACD=∠BFD,∴AG∥BF,∴四边形EBFG是平行四边形,∴FG=BE=6,在△BOD和△CHD中,&,∴△BOD≌△CHD(AAS),∴OD=DH=3,∵CH∥FG,∴△AHC∽△AFG,∴ = ,即 = ,解得:AC= ,故***为: &点评:本题考查了三角形全等的判定和性质,三角形相似的判定和性质,平行四边形的判定和性质以及勾股定理的应用,作出辅助线构建直角三角形和平行四边形是解题的关键.
18.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元 ,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红 和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款&&&&& 元.考点:分段函数..分析:根据题意知付款480元时,其实际标价为为480或600元,付款520元,实际标价为650元,求出一次购买标价1130元或1250元的商品应付款即可.解答:解:由题意知付款480元,实际标价为480或480× =600元,付款520元,实际标价为520× =650元,如果一次购买标价480+650=1130元的商品应付款800×0.8+()×0.6=838元.如果一次购买标价600+650=1250元的商品应付款800×0.8+()×0.6=910元.故***为:838或910.点评:本小题主要考查函数模型的选择与应用,考查函数的思想.属于基础题.三、解答题19.(本题满分8分)计算:(1)(-5)0-(3)2+|-3|;&&&&&&&&&&&& (2)(x+1)2-2(x-2).考点:整式的混合运算;实数的运算;零指数幂..分析:(1)先算0指数幂、平方和绝对值,再算加减;(2)利用完全平方公式计算,再合并得出***即可.解答:解:(1)原式=1﹣3+3=1. (2)原式=x2+2x+1﹣2x+4=x2+5.点评:此题考查整式的混合运算,掌握运算的顺序与计算的方法是解决问题的关键.
20.(本题满分8分)&& (1)解不等式:2(x-3)-2≤0;&&&&&&&& (2)解方程组:2x-y=5,………①x-1=12(2y-1).…② 考点:解一元一次不等式;解二元一次方程组..分析:(1)先去括号,再移项、合并同类项,不等式两边同乘以 ,即可得出不等式的解集;(2)先把②整理,再由减法消去x求出y,然后代入①求出x即可,解答:解:(1)去括号,得:2x﹣6﹣2≤0,移项,得:2x≤6+2,合并同类项,得:2x≤8,两边同乘以 ,得:x≤4;∴原不等式的解集为:x≤4.(2)由②得:2x﹣2y=1③,&①﹣②得:y=4,把y=4代入①得:x= ,∴原方程组的解为: 点评:本题考查了不等式的解法、二元一次方程组的解法;熟练掌握不等式的解法和用加减法解方程组是解决问题的关键,
21.(本题满分8分)已知:如图,AB∥C D,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.考点:全等三角形的判定与性质..专题:证明题.分析:(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.解答:证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,&,∴△AEC≌△BED(SAS),∴AC=BD.点评:本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.
22.(本题满分8分)已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45&.(1)求BD的长;(2)求图中阴影部分的面积.
考点:圆周角定理;勾股定理;扇形面积的计算..分析:(1)由AB为⊙O的直径,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.连OD,得到等腰直角三角形,根据勾股定理即可得到结论;(2)根据S阴影=S扇形﹣S△OBD即可得到结论.解答:解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD= =5 cm.
(2)S阴影=S扇形﹣S△OBD= π•52﹣ ×5×5= cm2.&点评:本题考查了圆周角定理,勾股定理,等腰直角三角形的性质,扇形的面积,三角形的面积,连接OD构造直角三角形是解题的关键.23.(本题满分6分)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& (&&& )A.从不&&&&&&& B.很少&&&&& C.有时&&&& D.常常&&&& E.总是答 题的学生在这五个选项中只能选择一项.下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.
&&& 根据以上信息,解答下列问题:(1)该区共有&&& ▲&&& 名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为&&& ▲&&& .考点:条形统计图;扇形统计图..分析:(1)结合两个统计图中的“从不”的人数与所占百分比即可求出初二年级的学生参加数量;(2)用总人数分别减去“从不”、“很少”、“常常”、“总是”的人数,计算出“有时”的人数即可将条形统计图补充完整;(3)利用公式“总是”所占的百分比= %计算即可.解答:解:(1)96÷3%=3200,故***为:3200;(2)“有时”的人数=0﹣736﹣;如图所示:&(3)“总是”所占的百分比= %= 100%=42%,故***为:42%.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24.(本题满分8分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是&& ▲&& (请直接写出结果).考点:列表法与树状图法..分析:(1)根据画树状图,可得总结果与传到甲手里的情况,根据传到甲手里的情况比上总结过,可得***;(2)根据第一步传的结果是n,第二步传的结果是n2,第三步传的结果是总结过是n3,传给甲的结果是n(n﹣1),根据概率的意义,可得***.解答:解:(1)画树状图:&
共有9种等可能的结果,其中符合要求的结果有3种,∴P(第2次传球后球回到甲手里)= = .(2)第三步传的结果是总结过是n3,传给甲的结果是n(n﹣1),第三次传球后球回到甲手里的概率是 = ,故***为: .点评:本题考查了树状图法计算概率,计算概率的方法有树状图法与列表法,画树状图是解题关键.25.(本题满分8分)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价-购买原材料成本-水费)考点:一次函数的应用;一元一次不等式的应用..分析:设甲车间用x箱原材料生产A产品,则乙车间用(60﹣x)箱原材料生产A产品,根据题意列出不等式,确定x的取值范围,列出w=30[12x+10(60﹣x)]﹣80×60﹣5[4x+2(60﹣x)]=50x+12 600,利用一次函数的性质,即可解答.解答:解:设甲车间用x箱原材料生产A产品,则乙车间用(60﹣x)箱原材料生产A产品.由题意得4x+2(60﹣x)≤200,解得x≤40.w=30[12x+10(60﹣x)]﹣80×60﹣5[4x+2(60﹣x)]=50x+12 600,∵50>0,∴w随x的增大而增大.∴当x=40时,w取得最大值,为14 600元.答:甲车间用40箱原材料生产A产品,乙车间用20箱原材料生产A产品,可使工厂所获利润最大,最大利润为14 600元.点评:本题考查了一次函数的应用,解决本题的关键是根据题意列出关系式,利用一次函数的性质解决问题.26.(本题满分10分)已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m-5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90&?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.考点:圆的综合题..专题:综合题.分析:(1)由四边形四个点的坐标易得OA=BC=5,BC∥OA,以OA为直径作⊙D,与直线BC分别交于点E、F,根据圆周角定理得∠OEA=∠OFA=90°,如图1,作DG⊥EF于G,连DE,则DE=OD=2.5,DG=2,根据垂径定理得EG=GF,接着利用勾股定理可计算出EG=1.5,于是得到E(1,2),F(4,2),即点P在E点和F点时,满足条件,此时 ,即1≤m≤9时,边BC上总存在这样的点P,使∠OPA=90°;(2)如图2,先判断四边形OABC是平行四边形,再利用平行线的性质和角平分线定义可得到∠AQO=90°,以OA为直径作⊙D,与直线BC分别交于点E、F,则∠OEA=∠OFA=90°,于是得到点Q只能是点E或点F,当Q在F点时,证明F是BC的中点.而F点为 (4,2),得到m的值为6.5;当Q在E点时,同理可求得m的值为3.5.解答:解:(1)存在.∵O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).∴OA=BC=5,BC∥OA,以OA为直径作⊙D,与直线BC分别交于点E、F,则∠OEA=∠OFA=90°,如图1,作DG⊥EF于G,连DE,则DE=OD=2.5,DG=2,EG=GF,∴EG= =1.5,∴E(1,2),F(4,2),∴当 ,即1≤m≤9时,边BC上总存在这样的点P,使∠OPA=90°;(2)如图2,∵BC=OA=5,BC∥OA,∴四边形OABC是平行四边形,∴OC∥AB,∴∠AOC+∠OAB=180°,∵OQ平分∠AOC,AQ平分∠OAB,∴∠AOQ= ∠AOC,∠OAQ= ∠OAB,∴∠AOQ+∠OAQ=90°,∴∠AQO=90°,以OA为直径作⊙D,与直线BC分别交于点E、F,则∠OEA=∠OFA=90°,∴点Q只能是点E或点F,当Q在F点时,∵OF、AF分别是∠AOC与∠OAB的平分线,BC∥OA,∴∠CFO=∠FOA=∠FOC,∠BFA=∠FAO=∠FAB,∴CF=OC,BF=AB,而OC=AB,∴CF=BF,即F是BC的中点.而F点为 (4,2),∴此时m的值为6.5,当Q在E点时,同理可求得此时m的值为3.5,综上所述,m的值为3.5或6.5.&&点评:本题考查了圆的综合题:熟练掌握垂径定理、圆周角定理和平行四边形的判定与性质;理解坐标与图形性质;会利用勾股定理计算线段的长.
27.(本题满分10分)一次函数y=34x的图像如图所示,它与二次函数y=ax2-4ax+c的图像交于A、B两点(其中点A在点B的左侧),与这个二次函数图像的对称轴交于点C.&& (1)求点 C的坐标;&& (2)设二次函数图像的 顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.
考点:二次函数综合题..分析:(1)先求出对称轴为x=2,然后求出与一次函数y= x的交点,即点C的坐标;(2)①先求出点D的坐标,设A坐标为(m, m),然后根据面积为3,求出m的值,得出点A的坐标,最后根据待定系数法求出a、c的值,即可求出解析式;②过点A作AE⊥CD于E,设A坐标为(m, m),由S△ACD=10,求出m的值,然后求出点A坐标以及CD的长度,然后分两种情况:当a>0,当a<0时,分别求出点D的坐标,代入求出二次函数的解析式.解答:解:(1)∵y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c,∴二次函数图象的对称轴为直线x=2,当x=2时,y= x= ,故点C(2, );
(2)①∵点D与点C关于x轴对称,∴D(2,﹣ ,),∴CD=3,设A(m, m)(m<2),由S△ACD=3得: ×3×(2﹣m)=3,解得m=0,∴A(0,0).由A(0,0)、D(2,﹣ )得:&,解得:a= ,c=0.∴y= x2﹣ x;②设A(m, m)(m<2),过点A作AE⊥CD于E,则AE=2﹣m,CE= ﹣ m,AC= = = (2﹣m),∵CD=AC,∴CD= (2﹣m),由S△ACD=10得 × (2﹣m)2=10,解得:m=﹣2或m=6(舍去),∴m=﹣2,∴A(﹣2,﹣ ),CD=5,当a>0时,则点D在点C下方,∴D(2,﹣ ),由A(﹣2,﹣ )、D(2,﹣ )得:&,解得: ,∴y= x2﹣ x﹣3;当a<0时,则点D在点C上方,∴D(2, ),由A(﹣2,﹣ )、D(2, )得: ,解得 ,∴y=﹣ x2+2x+ .&点评:本题考查了二次根式的综合题,涉及了二次函数与一次函数的交点问题,三角形的面积公式,以及待定系数法求函数解析式等知识点,综合性较强,难度较大.
28.(本题满分10分)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若∠AOB=60&,OM=4,OQ=1,求证:CN⊥OB.(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:1OM-1ON的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求S1S2的取值范围.
考点:相似形综合题..专题:综合题.分析:(1)过P作PE⊥OA于E,利用两组对边平行的四边形为平行四边形得到OMPQ为平行四边形,利用平行四边形的对边相等,对角相等得到PM=OQ=1,∠PME=∠AOB=60°,进而求出PE与ME的长,得到CE的长,求出tan∠PCE的值,利用特殊角的三角函数值求出∠PCE的度数,得到PM于NC垂直,而PM与ON平行,即可得到CN与OB垂直;(2) ﹣ 的值不发生变化,理由如下:设OM=x,ON=y,根据OMPQ为菱形,得到PM=PQ=OQ=x,QN=y﹣x,根据平行得到三角形NQP与三角形NOC相似,由相似得比例即可确定出所求式子的值;②过P作PE⊥OA于E,过N作NF⊥OA于F,表示出菱形OMPQ的面积为S1,△NOC的面积为S2,得到 ,由PM与OB平行,得到三角形CPM与三角形CNO相似,由相似得比例求出所求式子 的范围即可.解答:解:(1)过P作PE⊥OA于E,∵PQ∥OA,PM∥OB,∴四边形OMPQ为平行四边形,∴PM=OQ=1,∠PME=∠AOB=60°,∴PE=PM•sin60°= ,ME= ,∴CE=OC﹣OM﹣ME= ,∴tan∠PCE= = ,∴∠PCE=30°,∴∠CPM=90°,又∵PM∥OB,∴∠CNO=∠CPM=90°,则CN⊥OB;(2)① ﹣ 的值不发生变化,理由如下:设OM=x,ON=y,∵四边形OMPQ为菱形,∴OQ=QP=OM=x,NQ=y﹣x,∵PQ∥OA,∴∠NQP=∠O,又∵∠QNP=∠ONC,∴△NQP∽△NOC,∴ = ,即 = ,∴6y﹣6x=xy.两边都除以6xy,得 ﹣ = ,即 ﹣ = .②过P作PE⊥OA于E,过N作NF⊥OA于F,则S1=OM•PE,S2= OC•NF,∴ = .∵PM∥OB,∴∠MCP=∠O,又∵∠PCM=∠NCO,∴△CPM∽△CNO,∴ = = ,∴ = =﹣ (x﹣3)2+ ,∵0<x<6,则根据二次函数的图象可知,0< ≤ .&点评:此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,二次函数的性质,平行四边形的判定与性质,以及菱形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.&文章来源莲 山课件 w ww.5 Y
上一个试题: 下一个试题:
· · · · · · · · · ·