当前位置:
>>>已知:抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称..
已知:抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.(1)求该抛物线的解析式;(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在请说明理由.
题型:解答题难度:中档来源:不详
(1) y=x2-x-6(2) (3)见解析试题分析:(1)把点B、C的坐标代入抛物线解析式,根据对称轴解析式列出关于a、b、c的方程组,求解即可;(2)根据抛物线解析式求出点A的坐标,再利用勾股定理列式求出AC的长,然后求出OD,可得点D在抛物线对称轴上,根据线段垂直平分线上的性质可得∠PDC=∠QDC,PD=DQ,再根据等边对等角可得∠PDC=∠ACD,从而得到∠QDC=∠ACD,再根据内错角相等,两直线平行可得PQ∥AC,再根据点D在对称轴上判断出DQ是△ABC的中位线,根据三角形的中位线平行于第三边并且等于第三边的一半求出DQ=AC,再求出AP,然后根据时间=路程÷速度求出点P运动的时间t,根据勾股定理求出BC,然后求出CQ,根据速度=路程÷时间,计算即可求出点Q的速度.(3)假设存在这样的点M,使得△MPQ为等腰三角形,那么就需要要分类讨论:①当MP=MQ,即M为顶点;②;当PQ为等腰△MPQ的腰时,且P为顶点;③当PQ为等腰△MPQ的腰时,且Q为顶点.进行分类求解即可.试题解析:解:方法一:∵抛物线过C(0,-6)∴c=-6, 即y=ax2+bx-6由&,解得:a=&,b=-∴该抛物线的解析式为y=x2-x-6;方法二:∵A、B关于x=2对称∴A(-8,0),设y=a(x+8)(x-12)&C在抛物线上,∴-6=a×8×(-12)&即a=∴该抛物线的解析式为:y=x2-x-6.(2)存在,设直线CD垂直平分PQ, 在Rt△AOC中,AC==10=AD∴点D在对称轴上,连结DQ&显然∠PDC=∠QDC, 由已知∠PDC=∠ACD,∴∠QDC=∠ACD,∴DQ∥AC,DB=AB-AD=20-10=10∴DQ为△ABC的中位线,∴DQ=AC=5.AP=AD-PD=AD-DQ=10-5=5∴t=5÷1=5(秒)&∴存在t=5(秒)时,线段PQ被直线CD垂直平分,在Rt△BOC中, BC==6&∴CQ=3&∴点Q的运动速度为每秒单位长度. (3)存在&过点Q作QH⊥x轴于H,则QH=3,PH=9在Rt△PQH中,PQ==3.①当MP=MQ,即M为顶点,设直线CD的直线方程为:y=kx+b(k≠0),则:& ,解得:.∴y=3x-6当x=1时,y=-3 , ∴M1(1, -3).②当PQ为等腰△MPQ的腰时,且P为顶点.设直线x=1上存在点M(1,y) ,由勾股定理得:42+y2=90&&即y=±∴M2(1,)&& M3(1,-).③当PQ为等腰△MPQ的腰时,且Q为顶点.过点Q作QE⊥y轴于E,交直线x=1于F,则F(1, -3)设直线x=1存在点M(1,y), 由勾股定理得:(y+3)2+52=90&即y=-3±∴M4(1, -3+)&& M5((1, -3-) .综上所述:存在这样的五点:M1(1, -3),& M2(1,),& M3(1,-),& M4(1, -3+),M5((1, -3-)
马上分享给同学
据魔方格专家权威分析,试题“已知:抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称..”主要考查你对&&二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
定义:一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。 ①所谓二次函数就是说自变量最高次数是2;②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。二次函数的解析式有三种形式: (1)一般式:(a,b,c是常数,a≠0); (2)顶点式: (a,h,k是常数,a≠0) (3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的***因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。 二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零。二次函数的判定:二次函数的一般形式中等号右边是关于自变量x的二次三项式;当b=0,c=0时,y=ax2是特殊的二次函数;判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。 抛物线的主要特征:①有开口方向,a表示开口方向:a&0时,抛物线开口向上;a&0时,抛物线开口向下;②有对称轴;③有顶点;④c 表示抛物线与y轴的交点坐标:(0,c)。 二次函数图像性质:轴对称:二次函数图像是轴对称图形。对称轴为直线x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。a,b同号,对称轴在y轴左侧b=0,对称轴是y轴a,b异号,对称轴在y轴右侧顶点:二次函数图像有一个顶点P,坐标为P ( h,k )当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。h=-b/2a, k=(4ac-b^2)/4a。开口:二次项系数a决定二次函数图像的开口方向和大小。当a&0时,二次函数图像向上开口;当a&0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。决定对称轴位置的因素:一次项系数b和二次项系数a共同决定对称轴的位置。当a&0,与b同号时(即ab&0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a&0,所以 b/2a要大于0,所以a、b要同号当a&0,与b异号时(即ab&0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a&0, 所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab&0),对称轴在y轴左;当a与b异号时(即ab&0 ),对称轴在y轴右。事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。决定与y轴交点的因素:常数项c决定二次函数图像与y轴交点。二次函数图像与y轴交于(0,C)注意:顶点坐标为(h,k), 与y轴交于(0,C)。与x轴交点个数:a&0;k&0或a&0;k&0时,二次函数图像与x轴有2个交点。k=0时,二次函数图像与x轴只有1个交点。a&0;k&0或a&0,k&0时,二次函数图像与X轴无交点。当a&0时,函数在x=h处取得最小值ymin=k,在x&h范围内是减函数,在x&h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y&k当a&0时,函数在x=h处取得最大值ymax=k,在x&h范围内是增函数,在x&h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y&k当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。二次函数的最值:1.如果自变量的取值范围是全体实数,则当a&0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=;当a&0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=。 也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1 时;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2时&。 求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得***要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x?x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a?(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“已知:抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称..”考查相似的试题有:
682657739556509572701449723262478893如实数x.y满足x-y-2≥0x-3y-2≤0x+y-6≤0.目标函数z=ax-y取得最小值的最优解有无穷多个.则a=( ) A.-1B.-3C.1D.3 题目和参考***——精英家教网——
成绩波动大?难提高?听顶级名师视频辅导,
& 题目详情
如实数x,y满足x-y-2≥0x-3y-2≤0x+y-6≤0,目标函数z=ax-y取得最小值的最优解有无穷多个,则a=( )
A、-1B、-3C、1D、3
考点:简单线性规划
专题:计算题,作图题,不等式的解法及应用
分析:由题意作出其平面区域,将z=ax-y化为y=ax-z,-z相当于直线y=ax-z的纵截距,由几何意义可得.
解:由题意作出其平面区域,将z=ax-y化为y=ax-z,-z相当于直线y=ax-z的纵截距,∵目标函数z=ax-y取得最小值的最优解有无穷多个,∴y=ax-z与x+y-6=0平行,故a=-1.故选A.
点评:本题考查了简单线性规划,作图要细致认真,属于中档题.
请在这里输入关键词:
科目:高中数学
在几何体ABCDE中,∠BAC=π2,DC⊥平面ABC,EB⊥平面ABC,AB=AC=BE=2,CD=1.(Ⅰ)设F为BC的中点,求证:平面AFD⊥平面AFE;(Ⅱ)设平面ABE与平面ACD的交线为直线l,求证:l∥平面BCDE;(Ⅲ)求几何体ABCDE的体积.
科目:高中数学
已知函数f(x)=2x-1-12x+2,某同学利用计算器,算得f(x)的部分与x的值如表:x…-4-3-2-101234…f(x)…-0.4697-0.4412-0.3889-0.30-0.166700.16670.300.3889…请你通过观察,研究后,描述出关于f(x)的正确的一个性质(不包括定义域)
科目:高中数学
在平面直角坐标系xOy中,椭圆C的焦点为F1(-4,0)、F2(4,0),且经过点P(3,1).(1)求椭圆C的标准方程;(2)若点M在椭圆C上,且OM=12PF1+λPF2,求λ的值.
科目:高中数学
设函数f(x)=lnx+x2,曲y=f(x)线在点(1,f(1))处的切线方程为( )
A、y=3xB、y=3x-2C、y=2x-1D、y=2x-3
科目:高中数学
设不等式组0≤x≤20≤y≤3x+2y-2≥0所表示的平面区域为S,若A、B为区域S内的两个动点,则|AB|的最大值为.
科目:高中数学
已知数列{an}的前n项和Sn=n2-9n,若5<ak<8,则k=.
科目:高中数学
直线l1,l2的斜率分别为-1a,-23,若l1⊥l2,则实数a的值是( )
A、-23B、-32C、23D、32
科目:高中数学
若某几何体的三视图是如图所示的三个直角三角形,则该几何体的体积为( )
A、60B、20C、30D、10
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对***更方便,扫描上方二维码立刻***!
请输入姓名
请输入手机号当前位置:
>>>已知x=by+cz,y=cz+ax,z=ax+by,且x+y+z≠0.(1)试用x,y,z这3个..
已知x=by+cz,y=cz+ax,z=ax+by,且x+y+z≠0.(1)试用x,y,z这3个字母表示a; (不能出现字母b,c)(2)试说明:.
题型:解答题难度:中档来源:浙江省竞赛题
解:(1)解方程组:,(2)+(3)-(1)得:y+z-x=2ax,∴.(2)由(1)得:,同理可得,,,∴.
马上分享给同学
据魔方格专家权威分析,试题“已知x=by+cz,y=cz+ax,z=ax+by,且x+y+z≠0.(1)试用x,y,z这3个..”主要考查你对&&三元(及三元以上)一次方程(组)的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
三元(及三元以上)一次方程(组)的应用
三元一次方程组的应用:求待定系数的值,列方程组解应用题等。
发现相似题
与“已知x=by+cz,y=cz+ax,z=ax+by,且x+y+z≠0.(1)试用x,y,z这3个..”考查相似的试题有:
21775510967788949369095217065420256