如图,△ABC中,D为ab ac 点d是bc的中点点,AB=5,AD=6,AC=13...

在三角形ABC中,D是BC的中点,AC=13,AD=6,AB=5,问AD与AB的位置关系
AB⊥AD延长中线AD到E,使DE=AD,连结BE∵DE=AD,D是BC中点,∠BDE=∠CDA∴△BDE≌△CDA∴BE=AC=13,AE=AD+DE=6+6=12又∵AB=5,AC=13,AE=12∴5²+12²=15²即AB²+AE²=BE²∴∠BAE=90°(若三角形...
为您推荐:
其他类似问题
AD⊥AB.延长AD至E,使DE=AD,连BE.易知BE=AC=13,AE=2AD=12,AB=5,∴AB^2+AE^2=BE^2,∴AD⊥AB.
扫描下载二维码如图,在三角形ABC中,D是AB的中点,AC=12,BC=5,CD=二分之一十三.求证三角形为直角三角形
证明:延长CD到E,使DE=CD=13/2∴CE=13易证△ADE≌△BDC(SAS)∴AE=BC=5,∠E=∠BCD∴AE‖BC∵AE=5,AC=12,CE=13∴AE²+AC²=CE²∴∠CAE=90°∵AE‖BC∴∠ACB=90°∴△ABC是直角三角形
为您推荐:
其他类似问题
过D做DE//AC,交BC于E∵D是AB的中点,DE//AC∴E是BC的中点,∴DE= AC/2 = 6,CE = CB/2 = 5/2∵CD = 13/2∴CD² = DE²+ CE²∴∠DEC = 90°∴DE⊥BC∵DE//AC∴AC ⊥BC∴∠ACB = 90°∴△ACB是Rt三角形
没图不好求。
扫描下载二维码(2014o盐城)【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD-PE=CF;
请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且ADoCE=DEoBC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
【问题情境】如下图②,按照小军、小俊的证明思路即可解决问题.
【变式探究】如下图③,借鉴小军、小俊的证明思路即可解决问题.
【结论运用】易证BE=BF,过点E作EQ⊥BF,垂足为Q,如下图④,利用问题情境中的结论可得PG+PH=EQ,易证EQ=DC,BF=DF,只需求出BF即可.
【迁移拓展】由条件ADoCE=DEoBC联想到三角形相似,从而得到∠A=∠ABC,进而补全等腰三角形,△DEM与△CEN的周长之和就可转化为AB+BH,而BH是△ADB的边AD上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题.
解:【问题情境】证明:(方法1)连接AP,如图②
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP+S△ACP,
∴ABoCF=ABoPD+ACoPE.
∴CF=PD+PE.
(方法2)过点P作PG⊥CF,垂足为G,如图②.
∵PD⊥AB,CF⊥AB,PG⊥FC,
∴∠CFD=∠FDG=∠FGP=90°.
∴四边形PDFG是矩形.
∴DP=FG,∠DPG=90°.
∴∠CGP=90°.
∵PE⊥AC,
∴∠CEP=90°.
∴∠PGC=∠CEP.
∵∠BDP=∠DPG=90°.
∴PG∥AB.
∴∠GPC=∠B.
∴∠B=∠ACB.
∴∠GPC=∠ECP.
在△PGC和△CEP中,
∴△PGC≌△CEP.
∴CF=CG+FG
【变式探究】
证明:(方法1)连接AP,如图③.
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP-S△ACP,
∴ABoCF=ABoPD-ACoPE.
∴CF=PD-PE.
(方法2)过点C作CG⊥DP,垂足为G,如图③.
∵PD⊥AB,CF⊥AB,CG⊥DP,
∴∠CFD=∠FDG=∠DGC=90°.
∴四边形CFDG是矩形.
∴CF=GD,∠DGC=90°.
∴∠CGP=90°.
∵PE⊥AC,
∴∠CEP=90°.
∴∠CGP=∠CEP.
∵CG⊥DP,AB⊥PD,
∴∠CGP=∠BDP=90°.
∴CG∥AB.
∴∠GCP=∠B.
∴∠B=∠ACB.
∵∠ACB=∠PCE,
∴∠GCP=∠ECP.
在△CGP和△CEP中,
∴△CGP≌△CEP.
∴CF=DG=DP-PG
【结论运用】过点E作EQ⊥BC,垂足为Q,如图④,
∵四边形ABCD是矩形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=8,CF=3,
∴BF=BC-CF=AD-CF=5.
由折叠可得:DF=BF,∠BEF=∠DEF.
∵∠C=90°,
∴DC=2-CF2
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC.
∴四边形EQCD是矩形.
∴EQ=DC=4.
∵AD∥BC,
∴∠DEF=∠EFB.
∵∠BEF=∠DEF,
∴∠BEF=∠EFB.
由问题情境中的结论可得:PG+PH=EQ.
∴PG+PH=4.
∴PG+PH的值为4.
【迁移拓展】延长AD、BC交于点F,作BH⊥AF,垂足为H,如图⑤.
∵ADoCE=DEoBC,
∵ED⊥AD,EC⊥CB,
∴∠ADE=∠BCE=90°.
∴△ADE∽△BCE.
∴∠A=∠CBE.
由问题情境中的结论可得:ED+EC=BH.
设DH=xdm,
则AH=AD+DH=(3+x)dm.
∵BH⊥AF,
∴∠BHA=90°.
∴BH2=BD2-DH2=AB2-AH2.
∵AB=2,AD=3,BD=,
∴()2-x2=(2)2-(3+x)2.
解得:x=1.
∴BH2=BD2-DH2
=37-1=36.
∴ED+EC=6.
∵∠ADE=∠BCE=90°,
且M、N分别为AE、BE的中点,
∴DM=EM=AE,CN=EN=BE.
∴△DEM与△CEN的周长之和
=DE+DM+EM+CN+EN+EC
=DE+AE+BE+EC
∴△DEM与△CEN的周长之和为(6+2)dm.

参考资料

 

随机推荐