已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10,BC=8,CA=6,则点O到三边AB、AC和BC的距离分别等于
A.2、2、2B.3、3、3C.4、4、4D.2、3、5
试题“已知:如图,△ABC中,∠C=90°,点O为△A...”;主要考察你对
等知识点的理解。
用长为4cm,5cm,6cm的三条线段围成一个三角形,该事件是
A.随机事件
B.必然事件
C.不可能事件
D.无法确定
(本小题满分5分)某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14:9:6:1,评价结果为D等级的有2人,请你回答以下问题:小题1: (1)共抽测了多少人?小题2: (2)样本中B等级的频率是多少?小题3:(3)如果要绘制扇形统计图,A等级在扇形统计图中所占的圆心角是多少度?小题4:(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?
某校学生会准备调查2011级初三同学每天(除课间操外)的课外锻炼时间.小题1: 确定调查方式时,甲同学说:“我到(1)班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到2011级初三每个班去随机调查一定数量的同学”.请你指出哪位同学的调查方式最为合理;小题2: 他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将条形统计图补充完整,并在扇形统计图中涂出一块表示“基本不参加”的部分;小题3: 若该校2011级初三共有420名同学,请你估计其中每天(除课间操外)课外锻炼时间不超过20分钟的人数.(注:图2中相邻两虚线形成的圆心角均为30°)
高考全年学习规划
该知识易错题
该知识点相似题
高考英语全年学习规划讲师:李辉
更多高考学习规划:
******:400-676-2300
京ICP证050421号&京ICP备号 &京公安备110-1081940& 网络视听许可证0110531号
旗下成员公司如图,△ABC的三条角平分线交于I点,AI交BC于点D.求证:∠CID+∠ABI=90°.
证明:∵I是△ABC的三条角平分线的交点,∴∠IAC=
∠BAC,∠ICA=
∠BCA,∠ABI=
∠ABC,由三角形的内角和定理知:∠BAC+∠BCA+∠ABC=180°,∴∠IAC+∠ICA+∠ABI=90°;由三角形的外角性质知:∠CID=∠IAC+∠ICA;故∠CID+∠ABI=90°.
试题“如图,△ABC的三条角平分线交于I点,AI交BC...”;主要考察你对
等知识点的理解。
用长为4cm,5cm,6cm的三条线段围成一个三角形,该事件是
A.随机事件
B.必然事件
C.不可能事件
D.无法确定
为了了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成条形统计图(如图),那么关于该班45名同学一周参加体育锻炼时间的说法错误的是 (
A.众数是9
B.中位数是9
C.平均数是9
D.锻炼时间不高于9小时的有13人
某调查小组就400名学生对小品的喜欢程度进行了调查,并将调查结果用条形统计图进行了表示。已知条形统计图中非常喜欢、喜欢、有一点喜欢、不喜欢四类满意程度对应的小长方形面积的比为6:9:2:1,那么将这个调查结果用扇形统计图表示时,不喜欢部分对应的扇形的中心角的度数是(
高考全年学习规划
该知识易错题
该知识点相似题
高考英语全年学习规划讲师:李辉
更多高考学习规划:
******:400-676-2300
京ICP证050421号&京ICP备号 &京公安备110-1081940& 网络视听许可证0110531号
旗下成员公司考点:等腰三角形的判定与性质,三角形内角和定理,三角形的外角性质
分析:如图,首先求出∠BEN=50°,进而求出∠BCN=30°;证明△BEN≌△BFN,得到∠BFN=∠BEN=50°,即可解决问题.
解答:解:∵N是三条角平分线的交点,∴∠BAC=2∠BAN=40°,∠ABC=2∠EBN;∠ACB=2∠BCN;∵∠ENA=30°,∴∠BEN=20°+30°=50°;∵EF⊥BN于点N,∴∠EBN=90°-50°=40°∴∠ABC=80°,∠ACB=180°-40°-80°=60°,∴∠BCN=30°;在△BEN与△BFN中,∠EBN=∠FBNBN=BN∠ENB=∠FNB,∴△BEN≌△BFN(ASA),∴∠BFN=∠BEN=50°,∴∠FNC=50°-30°=20°,故该题***为20°.
点评:该命题以三角形为载体,以三角形的内角和定理、三角形外角的性质、全等三角形的判定及其应用等知识点为考查的核心构造而成;灵活运用有关定理来分析、判断、推理或解答是关键.
请在这里输入关键词:
科目:初中数学
甲、乙两同学都从学校出发去县城,甲步行每小时走4千米,甲先走1.5小时后,乙骑自行车追赶,乙出发后半小时追上了甲,乙每小时行多少千米?
科目:初中数学
计算:4+-3.
科目:初中数学
已知x=-1,y=-2,求-3x(x2-2xy)-(9x3y3+12x2y4)÷(-3y3)的值.
科目:初中数学
如图,在△ABC中,DE∥BC,=,S△ADE=4cm2,则S△ABC为( )
A、8cm2B、12cm2C、16cm2D、36cm2
科目:初中数学
在同一坐标系中,求出y=和y=2x的图象交点坐标.
科目:初中数学
阅读下列解题过程:请回答下列问题:(1)==2-(4)2=-=-2(2)==2-(5)2=-(1)观察上面的解题过程,请直接写出结果:=(2)利用上面信息请化简:+++…+的值.
科目:初中数学
如图,在△ABC中,∠B=60°,∠C=70°.(1)尺规作图:作△ABC的内切圆圆O;(2)若圆O分别与边BC、AB、AC交于点D、E、F,求∠EDF的度数.
科目:初中数学
反比例函数y=(m>0,x>0)的图象在第一象限与直线L:y=-x+3至少有一个交点时,m的取值范围为.
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对***更方便,扫描上方二维码立刻***!如图,在△ABC中,三条角平分线交于O,OG⊥BC,试说明∠BOD=∠COG
jdJA04VH00
证明:根据题意得:∠BOD=∠BAO+∠ABO=1/2(∠A+∠B)∠COG=90°-∠OCG=1/2(180°-∠C)=1/2(∠A+∠B)∴∠BOD=∠COG
为您推荐:
其他类似问题
证明:根据题意得:
∠BOD=∠BAO+∠ABO
=1/2(∠A+∠B)
∠COG=90°-∠OCG
=1/2(180°-∠C)
=1/2(∠A+∠B)∴∠BOD=∠COG 三角和定理哦
扫描下载二维码