1/2:1/3=1/10:χ 讲解 英文

> 问题详情
要求以下程序的功能是计算:s=1+1/2+1/3+…+…1/10 main( ) { s=1.0; for
悬赏:0&***豆
提问人:匿名网友
发布时间:
要求以下程序的功能是计算:s=1+1/2+1/3+…+…1/10main( ){s=1.0;for(n=10;n&1;n--)s=s+1/n;printf("%6.4f\n",s);}程序运行后输出结果错误,导致错误结果的程序行是A.s=1.0;B.for(n=10;n&1;n--)C.s=s+1/n;D.printf("%6.4f\n",s);
有如下程序#include void main(){int
a[3][3]={{ Experimental
The complex was prepared in two steps. Equimolar amounts of [2.2.2] cryptand
and NaI in ethanol solution were mixed and refluxed for 5 min. After cooling,
the solution was added to a chloroform solution of DIPFA2 (1.5 equivalents).
A glass vial containg the resulting mixture was put in a wide mouth flask
containing vaseline oil. Vapour exchange at room temperature afforded
colourless, thin, hexagonal crystals of good quality after a few days.
Refinement
The tetrafluorodiiodoethane molecule was rotationally disordered. The split
model was refined with restraints on geometric parameters and ADPs. The
rotation of this molecule around the I···I axis, was so large that
SHELXL suggested a second splitting of two F atoms. We considered this
suggestion not useful and even dangerous to refinement stability in view of
the high correlations between split atoms parameters (already up to 0.87).
Hydrogen atoms were positioned geometrically and refined using a riding model,
with C—H = 0.95&#x Å and with Uiso(H) = 1.2 times
Ueq(C).Figures The three components of CX1, with numbering scheme of the indepent atoms. The disordered atoms of DIPFA2, generated by the twofold axis are omitted for clarity. Probability level at 50%.A layer of cations and two layers of anions, are shown along the a* axis, only partial overposition is adopted for sake of clarity. One hexagonal ring of supramolecular cations and of supramolecular anions are the topologic units of the layers and are ...The same molecular assembly as shown in Figure 2, projected down the c axisCrystal data [Na(C18H36N2O6)]I−·1.5C2F4I2Dx = 2.116 Mg m−3Mr = 1057.11Mo Kα radiation,  = 0.71073 ÅTrigonal, R3cCell parameters from 20222 reflectionsa = 11.634 (2) Åθ = 2.2&#x°c = 84.945 (15) ŵ = 3.84 mm−1V = 9957 (4) Å3T = 93 KZ = 12Hexagonal table, colourlessF(000) = 60120.28 × 0.25 × 0.03 mmData collection Bruker APEXII CCD diffractometer2604 reflections with I > 2σ(I)Radiation source: sealed tubeRint = 0.035 and ω scansθmax = 30.0°, θmin = 1.4°Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −15→15Tmin = 0.676, Tmax = 1.000k = −15→1547282 measured reflectionsl = &#x⦔ independent reflectionsRefinement Refinement on F2Primary atom site location: structure-invariant direct methodsLeast-squares matrix: fullSecondary atom site location: difference Fourier mapR[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring siteswR(F2) = 0.076H-atom parameters constrainedS = 1.07w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/32994 reflections(Δ/σ)max = 0.001148 parametersΔρmax = 1.64 e Å−344 restraintsΔρmin = &#x e Å−3Special details Experimental. OXFORD low temperature device.Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes.Refinement. The tetrafluorodiiodoethane molecule was rotationally disordered. The split
model was refined with restraints on geometric parameters and ADPs. The
rotation of this molecule around the I···I axis, was so large
that SHELXL suggested a second splitting of two F atoms. We
considered not useful and even dangerous the suggestion, because the largest
correlations between split atoms parameters, already high (&#x), would be
larger.Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) xyzUiso*/UeqOcc. (<1)I20.00000.00000.47358 (2)0.01498 (10)I10.22447 (2)0.05878 (2)0.44381 (2)0.02001 (9)C70.3618 (9)0.1058 (7)0.42456 (12)0.029 (2)0.5F10.4634 (7)0.2274 (9)0.42658 (10)0.065 (3)0.5F20.4115 (9)0.0252 (9)0.42395 (11)0.080 (3)0.5C80.3016 (8)0.1016 (6)0.40861 (12)0.028 (2)0.5F30.2439 (9)0.1750 (10)0.40947 (12)0.074 (3)0.5F40.2054 (7) (8)0.40618 (10)0.083 (4)0.5Na0.33330.66670.48841 (2)0.0176 (4)N10.33330.66670.52071 (5)0.0147 (9)C10.2462 (3)0.5297 (3)0.52603 (3)0.0167 (6)H1A0.15250.50710.52480.020*H1B0.26220.52320.53740.020*C20.2684 (3)0.4311 (3)0.51696 (4)0.0174 (6)H2A0.35850.44610.51910.021*H2B0.20290.33970.52020.021*O10.2542 (2)0.44777 (19)0.50055 (2)0.0159 (4)C30.2593 (3)0.3468 (3)0.49158 (3)0.0186 (6)H3A0.18020.25950.49380.022*H3B0.33940.34220.49440.022*C40.2632 (3)0.3789 (3)0.47452 (4)0.0186 (6)H4A0.26020.30670.46800.022*H4B0.18570.38840.47180.022*O20.3838 (2)0.5009 (2)0.47155 (3)0.0180 (5)C50.4235 (3)0.5180 (3)0.45540 (4)0.0198 (6)H5A0.42100.43630.45160.024*H5B0.51620.59180.45460.024*C60.3357 (3)0.5475 (3)0.44487 (3)0.0191 (6)H6A0.36870.55970.43390.023*H6B0.24420.47080.44500.023*N20.33330.66670.44990 (5)0.0173 (9)Atomic displacement parameters (Å2) U11U22U33U12U13U23I20.01522 (13)0.01522 (13)0.01451 (17)0.00761 (6)0.0000.000I10.01636 (13)0.02578 (14)0.01665 (12)0.00961 (9)0.00183 (7)0.00086 (8)C70.028 (5)0.051 (6)0.021 (5)0.030 (5)0.005 (4)0.002 (4)F10.025 (3)0.080 (6)0.025 (3)&#x (4)0.007 (2)&#x (5)F20.114 (8)0.145 (7)0.058 (6)0.122 (7)0.058 (5)0.066 (5)C80.017 (5)0.048 (6)0.020 (5)0.017 (4)0.004 (4)0.003 (4)F30.086 (7)0.137 (7)0.060 (6)0.101 (6)0.046 (5)0.063 (6)F40.033 (4)0.089 (7)0.028 (3)&#x (4)0.009 (3)&#x (5)Na0.0162 (7)0.0162 (7)0.0204 (10)0.0081 (3)0.0000.000N10.0115 (13)0.0115 (13)0.021 (2)0.0057 (6)0.0000.000C10.0148 (14)0.0158 (15)0.0172 (14)0.0058 (13)0.0007 (11)0.0012 (11)C20.0184 (16)0.0147 (15)0.0184 (15)0.0078 (13) (12)0.0023 (11)O10.0194 (11)0.0140 (11)0.0163 (10)0.0099 (9)0.0001 (8)0.0004 (8)C30.0219 (16)0.0120 (15)0.0211 (15)0.0079 (13)0.0002 (12) (11)C40.0167 (15)0.0135 (15)0.0221 (15)0.0049 (13)0.0016 (12) (12)O20.0182 (11)0.0143 (11)0.0185 (11)0.0058 (9)0.0000 (8) (8)C50.0192 (16)0.0188 (16)0.0207 (15)0.0091 (13)0.0038 (13)0.0002 (12)C60.0197 (16)0.0195 (16)0.0168 (14)0.0089 (13)0.0001 (12) (12)N20.0167 (14)0.0167 (14)0.018 (2)0.0084 (7)0.0000.000Geometric parameters (Å, �) I1—C8i2.153 (11)O1—C31.427 (4)I1—C72.156 (11)C3—C41.492 (4)C7—F11.325 (5)C3—H3A0.9900C7—F21.327 (5)C3—H3B0.9900C7—C81.514 (7)C4—O21.434 (4)C8—F41.325 (5)C4—H4A0.9900C8—F31.327 (5)C4—H4B0.9900N1—C1ii1.468 (3)O2—C51.430 (4)N1—C11.468 (3)C5—C61.520 (4)N1—C1iii1.468 (3)C5—H5A0.9900C1—C21.508 (4)C5—H5B0.9900C1—H1A0.9900C6—N21.464 (3)C1—H1B0.9900C6—H6A0.9900C2—O11.428 (4)C6—H6B0.9900C2—H2A0.9900N2—C6iii1.464 (3)C2—H2B0.9900N2—C6ii1.464 (4)F1—C7—F2106.7 (7)O1—C3—C4108.7 (2)F1—C7—C8107.6 (5)O1—C3—H3A109.9F2—C7—C8107.4 (5)C4—C3—H3A109.9F1—C7—I1109.0 (5)O1—C3—H3B109.9F2—C7—I1112.3 (6)C4—C3—H3B109.9C8—C7—I1113.5 (4)H3A—C3—H3B108.3F4—C8—F3106.5 (7)O2—C4—C3108.1 (2)F4—C8—C7107.5 (5)O2—C4—H4A110.1F3—C8—C7107.7 (5)C3—C4—H4A110.1F1i—C8—I1i118.8 (9)O2—C4—H4B110.1F4—C8—I1i110.4 (6)C3—C4—H4B110.1F3—C8—I1i110.5 (6)H4A—C4—H4B108.4C7—C8—I1i114.0 (4)C5—O2—C4113.2 (2)C1ii—N1—C1110.97 (18)O2—C5—C6112.9 (3)C1ii—N1—C1iii110.97 (18)O2—C5—H5A109.0C1—N1—C1iii110.97 (18)C6—C5—H5A109.0N1—C1—C2112.3 (2)O2—C5—H5B109.0N1—C1—H1A109.1C6—C5—H5B109.0C2—C1—H1A109.1H5A—C5—H5B107.8N1—C1—H1B109.1N2—C6—C5112.0 (3)C2—C1—H1B109.1N2—C6—H6A109.2H1A—C1—H1B107.9C5—C6—H6A109.2O1—C2—C1108.6 (2)N2—C6—H6B109.2O1—C2—H2A110.0C5—C6—H6B109.2C1—C2—H2A110.0H6A—C6—H6B107.9O1—C2—H2B110.0C6iii—N2—C6ii111.84 (19)C1—C2—H2B110.0C6iii—N2—C6111.84 (19)H2A—C2—H2B108.3C6ii—N2—C6111.84 (18)C3—O1—C2110.8 (2)F1—C7—C8—F4176.1 (9)C1iii—N1—C1—C2162.6 (3)F2—C7—C8—F461.5 (8)N1—C1—C2—O1&#x (3)I1—C7—C8—F4&#x (8)C1—C2—O1—C3&#x (2)F1—C7—C8—F3&#x (8)C2—O1—C3—C4&#x (2)F2—C7—C8—F3175.9 (7)O1—C3—C4—O263.8 (3)I1—C7—C8—F351.1 (7)C3—C4—O2—C5158.4 (2)F1—C7—C8—I1i53.4 (8)C4—O2—C5—C671.9 (3)F2—C7—C8—I1i&#x (7)O2—C5—C6—N258.0 (3)I1—C7—C8—I1i174.0 (2)C5—C6—N2—C6iii&#x (3)C1ii—N1—C1—C2&#x (4)C5—C6—N2—C6ii78.7 (4)Symmetry codes: (i) −x+2/3, −x+y+1/3, −z+5/6; (ii) −y+1, x−y+1, z; (iii) −x+y, −x+1, z.Some parameters (Å, Å3) of the anionic layer and of the cation
in the structures CX1 and CX2. CX1CX2Hole side111.634 (2)11.7478 (15)Layer height29.6686 (18)9.6380 (13)h34.4889 (10)4.5343 (7)V3303.79 (7)312.89 (6)M+—O12.460 (2)2.6650 (12)M+—O22.692 (2)2.7737 (13)M+—N12.744 (5)2.941 (2)M+—N23.271 (5)2.985 (3)Notes:
(1) Distance between the nearest iodide anions on the same side of the anionic
layer, equal to the cell parameter a;
(2) distance between the planes through the iodide anions on the opposite sides
(3) h = distance between the nearest planes through iodide anions
of contiguous layers.
(4) V = a2h/2, volume of the trigonal prism whose
vertices are
iodide anions on a layer and the same faced on the contiguous one.Halogen and hydrogen bonds (Å, °) in CX1 and CX2. In CX2, the cell origin and the atom numbering are different, so that
atom labels and symmetry code refer only to CX1; for CX2 the reported
values refer to the equivalent atoms and values.X···Y—CCX1 X···YCX1 C—X···YCX2 X···YCX2 C—X···YI2···I1—C73.4492 (5)175.99 (17)3.4492 (5)176.30 (16)I2···I1—C8i3.4492 (5)168.30 (16)3.4492 (5)166.40 (16)O1···(H3B—C3)ii2.63147.92.60147.6Symmetry codes: (i) 2/3-x, 1/3-x+y, 5/6-z; (ii) x-y,x, 1-z.Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ).Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.
36, 1103.Farrugia, L. J. (2012). J. Appl. Cryst.
45, 849&#x.Fox, D. B., Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2004). J. Fluorine Chem.
125, 271&#x.Liantonio, R., Metrangolo, P., Meyer, F., Pilati, T., Navarrini, W. & Resnati, G. (2006). Chem. Commun. pp. 1819&#x.
[]Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2003). Cryst. Growth Des.
3, 355&#x.Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.
39, 453&#x.Metrangolo, P., Pilati, T. & Resnati, G. (2004). Handbook of Fluorous Chemistry, pp. 507&#x. Weinheim: Wiley VCH.Sheldrick, G. M. (2008). Acta Cryst. A64, 112&#x.
[]Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography
)- subscription required
Show all items
Show all items
Show all items
Show all items
Show all items
Show all items
Show all items
Show all items
Show all items
Show all items
Show all items
Show all items
Show all items
Show all items
Show all items
Show all items
CitePeer Related Articles8280人阅读
数据结构&算法(45)
题目:一个骰子,面,个面是,个面是,个面是,问平均掷多少次能使、、都至少出现一次。
解:(没学过《组合数学》的请略过)
设P(N=n)表示第n次(n&2)抛出后1,2,3都出现的概率,问题要求n的期望E(N=n).掷1的概率p=1/6,掷2的概率q=1/3,掷3的概率r=1/2.
写程序求解
#include &iostream&
float f(float x)
return (1/(1-x)/(1-x)-1-2*x);
int main()
float p=1.0/6,q=1.0/3,r=1.0/2,e;
e=r*(f(p+q)-f(p)-f(q))+p*(f(q+r)-f(q)-f(r))+q*(f(p+r)-f(p)-f(r));
在Visual Studio下的运行结果为:7.3
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:152299次
积分:2264
积分:2264
排名:第12044名
原创:59篇
转载:58篇
评论:20条
文章:17篇
阅读:5327
(1)(1)(1)(8)(3)(4)(2)(10)(23)(1)(1)(2)(1)(14)(11)(4)(2)(2)(1)(1)(4)(2)(6)(2)(2)(2)(8)114网址导航Hi~亲,欢迎来到题谷网,新用户注册7天内每天完成登录送积分一个,7天后赠积分33个,购买课程服务可抵相同金额现金哦~
意见详细错误描述:
教师讲解错误
错误详细描述:
当前位置:>>>
“乌鸦喝水”的故事你不陌生吧.如图所示,一只容积为3×10-4 m3的瓶内盛有0.2 kg的水,一只口渴的乌鸦每次将一块质量为0.01 kg的小石子投入瓶中,当乌鸦投入25块相同的小石子后,水面升到瓶口.求:(1)瓶内小石子的总体积;(2)小石子的密度.
主讲:王莹
【思路分析】
(1)瓶子的容积就等于小石子的体积加上水的体积,故25块石子的体积等于瓶子体积减去0.2kg水的体积;(2)上面求得质量和体积,用ρ= 算石子的密度.
【解析过程】
解:(1)0.2kg水的体积:V水==2×10-4m3,石块总体积: V石=V瓶-V水=3×10-4m3-2×10-4m3=1×10-4m3;(2)石块密度ρ石===2.5×103kg/m3.答:(1)瓶内石块的总体积1×10-4m3;(2)瓶内石块的密度2.5×103kg/m3.
(1)瓶内石块的总体积1×10-4m3;(2)瓶内石块的密度2.5×103kg/m3.
本题的关键是想到石块总体积加0.2kg水的体积等于瓶子容积,算石块的密度还可用一块石子的质量除以一块石子的体积.
给视频打分
招商***:010-
地址:北京市西城区新街口外大街28号A座4层409
扫一扫有惊喜!
COPYRIGHT (C)
INC. ALL RIGHTS RESERVED. 题谷教育 版权所有
京ICP备号 京公网安备

参考资料

 

随机推荐