四轮移动机器人避障怎么自主拐弯避障?有单目摄像头...

您正在使用IE低版浏览器,为了您的雷锋网账号安全和更好的产品体验,强烈建议使用更快更安全的浏览器
移动机器人的几种视觉算法 | 硬创公开课
谈到移动机器人,大家第一印象可能是服务机器人,实际上无人驾驶汽车、可自主飞行的等等都属于移动机器人范畴。它们能和人一样能够在特定的环境下自由行走/飞行,都依赖于各自的定位导航、路径规划以及避障等功能,而视觉算法则是实现这些功能关键技术。如果对移动机器人视觉算法进行拆解,你就会发现获取物体深度信息、定位导航以及壁障等都是基于不同的视觉算法,本期硬创公开就带大家聊一聊几种不同但又必不可少的视觉算法组成。分享嘉宾:陈子冲,Segway & Ninebot机器人业务高级架构师和算法负责人。本科毕业于清华大学电子工程系,完成基于DSP的卫星信标机的***软硬件实现,获本科生校级优秀论文。后在瑞士联邦理工大学深造获得博士学位,其博士课题获得国家优秀自费留学生奖。归国后,加入华为媒体实验室,带领团队成功研发应用于华为手机的实时双目视觉算法。2015年,陈子冲加入Segway Robot项目,致力于机器人导航等视觉感知算法的研发。Segway Robot项目于2016年1月在国际电子消费展(CES)主题演讲上发布,受到包括CNN、福布斯、TechCrunch、Wired等多家国际媒体的关注,并被评为CES最佳机器人之一。Segway&Robot是一个轮式的可移动机器人,它的底盘是一台具有400多项专利技术的平衡车,此外,它拥有Intel&Atom处理器、RealSense深度摄像头以及多种传感器。移动机器人的视觉算法种类Q:实现定位导航、路径规划以及避障,那么这些过程中需要哪些算法的支持?谈起移动机器人,很多人想到的需求可能是这样的:“嘿,你能不能去那边帮我拿一杯热拿铁过来。”这个听上去对普通人很简单的任务,在机器人的世界里,却充满了各种挑战。为了完成这个任务,机器人首先需要载入周围环境的地图,精确定位自己在地图中的位置,然后根据地图进行路径规划控制自己完成移动。而在移动的过程中,机器人还需要根据现场环境的三维深度信息,实时的躲避障碍物直至到达最终目标点。在这一连串机器人的思考过程中,可以***为如下几部分的视觉算法:1.深度信息提取2.视觉导航3.视觉避障后面我们会详细说这些算法,而这些算法的基础,是机器人脑袋上的视觉传感器。视觉算法的基础:传感器Q:上的摄像头可以作为机器人的眼睛吗?所有视觉算法的基础说到底来自于机器人脑袋上的视觉传感器,就好比人的眼睛和夜间视力非常好的动物相比,表现出来的感知能力是完全不同的。同样的,一个眼睛的动物对世界的感知能力也要差于两个眼睛的动物。每个人手中的智能手机摄像头其实就可以作为机器人的眼睛,当下非常流行的Pokeman&Go游戏就使用了计算机视觉技术来达成AR的效果。图片来源:ulightech像上图画的那样,一个智能手机中摄像头模组,其内部包含如下几个重要的组件:镜头,IR&filter,CMOS&sensor。其中镜头一般由数片镜片组成,经过复杂的光学设计,现在可以用廉价的树脂材料,做出成像质量非常好的手机摄像头。图片来源:wikipediaCMOS&sensor上面会覆盖着叫做Bayer三色滤光阵列的滤色片。每个不同颜色的滤光片,可以通过特定的光波波长,对应CMOS感光器件上就可以在不同位置分别获得不同颜色的光强了。如果CMOS传感器的分辨率是,为了得到同样分辨率的RGB彩色图像,就需要用一种叫做demosaicing的计算摄像算法,从2绿1蓝1红的2x2网格中解算出2x2的RGB信息。图片来源:thorlabs图片来源:alibaba一般的CMOS感光特性除了选择红绿蓝三色之外,对于红外光是透明的。因此在光路中加上IR滤光片,是为了去除太阳光线中红外光对CMOS的干扰。加上滤光片后,通常图像的对比度会得到显著的提升。Q:计算机视觉中还会用到什么传感器?除了RGB相机,计算机视觉中常用的还有其他种类的特殊相机。例如有一种相机的滤光片是只允许通过红外光波段的。因为人眼通常是看不见红外光的,所以可以在相机附近加上主动红外光源,用于测距等应用。图片来源:dailyvsvidz另外,大部分我们用到的camera都是以rolling&shutter的形式实现电子曝光的,像图中左侧那样,为了减少电子器件的成本,曝光通常是一行一行分别进行,这样势必造成物体快速移动时,相机采集到的图像会发生形变。为了避免这种形变对基于立体几何进行计算的视觉算法的影响(例如VSLAM),选用global&shutter的相机就显得特别重要了。图片来源:ericmojo图片来源:teledynedalsa深度相机是另一大类视觉算法中需要的传感器,可以分成如下几类:1.TOF传感器(例如Kinect&2代),类似昆虫复眼。成本高,室外可以使用。2.结构光传感器(例如Kinect&1代),三角定位原理,成本中,室外不能用。3.双目视觉(例如Intel&Realsense&R200),主动照明或被动照明,IR或可见光皆可。成本低,室外可以使用。算法一:深度信息提取Q:深度相机如何识别物体的深度信息的呢?简而言之,其原理就是使用两个平行的相机,对空间中的每个点三角定位。通过匹配左右两个相机中成像点的位置,来计算对应三维点在空间中的距离。学术界对双目匹配恢复深度图研究有很长的历史,在NASA火星车上就开始采用这个技术。但是其真正在消费电子品市场得到广泛应用还是从微软的Kinect体感传感器开始。图片来源:osapublishingKinect传感器背后使用了以色列Primesense公司授权的结构光技术(如今已被Apple收购)。其原理是避开双目匹配中复杂的算法设计,转而将一个摄像头更换成向外主动投射复杂光斑的红外投影仪,而另一个平行位置的相机也变成了红外相机,可以清楚的看到投影仪投射的所有光斑。因为人眼看不到红外光斑,而且纹理非常复杂,这就非常有利于双目匹配算法,可以用非常简洁的算法,识别出深度信息。尽管Kinect的内在原理官方并没有给出解释,在近年来一篇Kinect&Unleashed的文章中,作者向公众hack了这个系统的工作原理:首先,红外图像在基线方向上采样8倍,这样可以保证在做双目匹配后实现3bit的亚像素精度。然后,对图像做sobel滤波,使得图像的匹配精度提高。而后,图像与预存的投影光斑模板图像进行SAD&block&matching。该算法的计算复杂度小,适合硬化和并行。最后,经过简单的图像后处理,下采样到原始分辨率,得到最终的深度图。图表来源:Martinez, Manuel, and Rainer Stiefelhagen. &Kinect Unleashed: Getting Control over High Resolution Depth Maps.&&MVA. 2013.我们可以看到,随着2009年Kinect设备在消费机市场的爆发(发售头10天100万台),逐渐开始催生了类似技术变种在移动端设备的研发热潮。从2013年至今,随着计算能力的提升和算法的进步,硬件成本更低的主动/被动双目深度相机开始在移动手机上涌现。过去认为很难实时运行的双目匹配算法,即使在没有主动结构光辅助的情况下,也表现出非常优异的3D成像质量。Segway&robot采用了主动/被动可切换的双目深度视觉系统。如下图所示,左侧三个传感器分别为,左红外相机,红外pattern投影,右红外相机。在室内工作时,因为红外光源不足,红外投影打开,辅助双目匹配算法。在室外工作时,红外光源充足,红外投影关闭,双目匹配算法可以直接运行。综合看,此系统在室内外都表现出优异的深度传感能力。算法二:定位导航Q:视觉处理后,机器人是如何实现导航的?图片来源:pirobot机器人导航本身是一个比较复杂的系统。其中涉及到的技术会有如下列表。o视觉里程计 VOo建图,利用VO和深度图o重定位,从已知地图中识别当前的位置o闭环检测?,消除VO的闭环误差o全局导航o视觉避障oScene tagging,识别房间中物体加上tag机器人开机,视觉里程计就会开始工作,记录从开机位置起的6DOF定位信息。在机器人运动过程中,mapping算法开始构建机器人看到的世界,将空间中丰富的特征点信息,二维的地图信息记录到机器人map中。当机器人运动过程中因为遮挡、断电等原因丢失了自身的坐标,重定位算法就需要从已知地图中定位到机器人当前的位置估计。另外,当机器人运动中回到了地图中曾经出现过的位置,往往视觉里程计的偏差会导致轨迹并没有完全闭合,这就需要闭环算法检测和纠正这个错误。有了全局地图之后,机器人就可以给定一些目标点指令,做全局的自主导航了。在现实中,因为环境是不停变化的,全局地图并不能完全反映导航时的障碍物状况,因此需要凌驾于全局导航之上的视觉避障算法进行实时的运动调整。最后,一个自动的导航系统还需要机器人自动识别和理解空间中的不同物体的信息、位置、高度和大小。这些tag信息叠加在地图上,机器人就可以从语义上理解自己所处的环境,而用户也可以从更高层次下达一些指令。Q:视觉VSLAM在机器人上的实现有哪些难点?视觉VSLAM是一个集合了视觉里程计,建图,和重定位的算法系统。近年来发展很快。基于特征的视觉SLAM算法从经典的PTAM算法开端,目前以ORB-SLAM为代表的算法已经可以在PC上达到实时运行。下面是一个ORBSLAM的框图:从名字可见,其使用ORB作为图像特征提取工具,并且在后续的建图及重定位中均使用了同一份特征点信息。相对于传统的SIFT和SURF特征提取算法,其效率高出很多。ORB-SLAM包含三个并行的线程,即跟踪,建图和闭环。其中跟踪线程运行在前端,保证实时运行,建图和闭环线程运行在后端,速度不需要实时,但是与跟踪线程共享同一份地图数据,可以在线修正使得地图数据精度和跟踪精度更高。下图是ORB-SLAM地图的主要数据结构,点云和关键帧。两者之间通过图像上2D特征点与空间中的点云建立映射关系,同时还维护了关键帧之间的covisibility&graph关系。通过这些数据关联,用优化方法来维护整个地图。ORB-SLAM在机器人上应用仍然存在如下难点:1.计算量过大,在4核处理器上通常会占去60%左右CPU资源。2.在机器人运动过快时会出现跟丢不可复原的情况。3.单目SLAM存在尺度不确定的问题。在机器人快速旋转时,此问题尤其明显,很快会出现闭环误差过大无法纠正的情况。针对尺度问题,有两种方法解决:增加一个摄像头形成双目SLAM系统,或者增加一个IMU形成松耦合/紧耦合的视觉惯导定位系统。这里简单介绍松耦合的视觉惯导定位系统。一般把VSLAM当成一个黑盒子,将其的输出作为观测量放到一个基于IMU的EKF系统中,EKF最终fuse的输出即是系统的输出。考虑到camera数据和IMU数据通常是不同步的,因此通过硬件时间戳,需要判断图像数据对应的时间戳与IMU时间戳的关系。在EKF&propagate步骤,更高帧率的IMU数据不停的更新EKF的状态。在camera数据到来时,触发EKF&update步骤,根据EKF建模方程来更新状态变量、协方差矩阵,并且重新更新所有晚于camera数据的IMU数据对应的状态变量。Segway&Robot采用了业界领先的视觉惯导定位系统,下面是一个在楼道里面运行一圈,回到原点之后的效果图,具体有如下优势:1.在大尺度下可以保证非常小的闭环误差2.实时运行,需求CPU资源小3.允许快速旋转等情形,不会跟丢算法三:避障Q:视觉避障的算法原理是怎样的?导航解决的问题是引导机器人接近目标。当机器人没有地图的时候,接近目标的方法称为视觉避障技术。避障算法解决的问题是根据视觉传感器的数据,对静态障碍物、动态障碍物实现躲避,但仍维持向目标方向运动,实时自主导航。图片来源:sciepub避障算法有很多,然而这些方法都有严格的假设,假设障碍物为圆形或假设机器人为圆形,假设机器人可以任意方向运动,s或假设它只能走圆弧路径。然而实际应用上,机器人很难达到条件。比如VFF算法,&该算法假设机器人为点,而且可以任意方向运动。VFH+假设机器人为圆形,通过圆形膨胀障碍物,在考虑运动学问题时仅仅假设机器人以圆弧路径运动。DWA也假设机器人为圆形,在考虑运动学问题时只模拟了前向圆弧运动时的情况。相对而言,我们不限制机器人的形状,考虑运动学问题时,模拟多种运动模型,而不限于圆弧运动,因为这样可以为机器人找到更佳避开障碍物的行为。这张图显示了使用不同运动学模型导致不同的避障结果。左图表示使用圆弧模型时模拟的路径,右图表示使用另一种路径模型模拟的路径。在这种狭小环境,此方法可以提前预测多个方向的障碍物情况,选择合适的模型可以帮助找到更合适的运动方向躲避障碍物。和目前常用的避障算法之间存在的差异在于,它将运动学模型抽象化到周围环境地图中,然后就可以使用任何常用的避障算法,这样就解耦了运动学模型与算法的捆绑,而且任何要求严格的避障算法都能加入进来。Segway&Robot的避障系统,综合了深度传感器,超声波,IMU等sensor。在复杂的环境中,可以自如躲避障碍物。这张图是我们的避障系统的一个截图,可以看到深度图和2维的避障地图。最下面红色的指针就代表了每时每刻避障的决策。精彩问答Q:为什么选用ir相机而不是传统的rgb相机呢?ir相机相对来讲的优势在哪里?A:ir相机可以看到人眼看不到的物体,比如深度相机需要在室内投射红外纹理,帮助深度识别。人眼看不到,但ir相机可以看。Q:现在机器人导航是否主要是slam技术,还有没其他导航技术?主要流行的slam技术有哪些?用于无人驾驶和无人机的视觉导航技术有哪些异同?A:slam技术是导航中的一个基础模块,种类很多,有单目,双目,depth,imu+视觉等传感器为基础的算法。双目相机可以很好的适应室内和室外的环境。他的体积其实非常小,segway&robot使用的camera长度在10cm左右Q:现在有无用于机器人导航的导航地图存在,类似车载导航地图?用于机器人导航的地图数据有哪些?A:现在还没有这样的机器人导航地图存在,但是是研发热点。比如tesla和mobileye的地图之争。我们会在今年下半年发售开发者版本的机器人,可以到上申请。
同步到新浪微博
关注产品和创新的科技媒体
我们都在等待中国第一个toB独角兽的出现!如要爆料或者行业交流请加微信:Evans90!
当月热门文章
¥0(免费上门 手机快修)
本栏目由提供
为了您的账户安全,请
您的邮箱还未验证,完成可获20积分哟!
您的账号已经绑定,现在您可以以方便用邮箱登录移动机器人红外避障和单目视觉跟踪的研究_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
移动机器人红外避障和单目视觉跟踪的研究
上传于||文档简介
&&移​动​机​器​人​红​外​避​障​和​单​目​视​觉​跟​踪​的​研​究
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
你可能喜欢IndustryNews
基于计算机视觉的移动机器人导航
编译:linda
&[编辑简介]:随着计算机技术、数字图像处理技术及图像处理硬件的发展,基于计算机视觉的导航方式在导航中得到广泛关注。在实际中,只需要在路面上画出路径引导线,如同在公共交通道路上画的引导线一样,机器人就可以通过视觉进行自主导航。相对于敷设金属导线、磁钉等方法,这种方法增强了系统的灵活性,降低了维护成本。视觉信息中包含有大量的数据,要从中提取有用的信息,需要复杂的算法及耗时的计算。如何保证视觉导航系统在正确理解路径信息的前提下仍具有较好的实时性和鲁棒性,是该方法要解决的核心问题。
[关键词]:机器人 人工智能 计算机 传感器
  现代机器人技术在人工智能、计算机技术和传感器技术的推动下获得了飞速发展,其中移动机器人因具有可移动性和自治能力,能适应环境变化被广泛用于物流、探测、服务等领域。移动机器人的核心技术之一是导航技术,特别是自主导航技术。由于环境的动态变化和不可预测性、机器人感知手段的不完备等原因,使得移动机器人的导航难度较大,一直是人们研究的重点。
  目前常用的一种导航方式是&跟随路径导引&,即机器人通过对能感知到某些外部的连续路径参考信息做出相应的反应来导航。如在机器人运动路径上敷设金属导线或磁钉,通过检测金属导线或磁钉的特征信息来确定机器人的位置。从导航的角度看,这种方法的优点是可靠性较高,但功能单一,如不能在行进的同时对目标进行识别、避障,对环境的适应能力较弱、灵活性较差、维护成本较高,因此限制了其在移动机器人中的应用。
  随着计算机技术、数字图像处理技术及图像处理硬件的发展,基于计算机视觉的导航方式在机器人导航中得到广泛关注。在实际应用中,只需要在路面上画出路径引导线,如同在公共交通道路上画的引导线一样,机器人就可以通过视觉进行自主导航。相对于敷设金属导线、磁钉等方法,这种方法增强了系统的灵活性,降低了维护成本。视觉信息中包含有大量的数据,要从中提取有用的信息,需要复杂的算法及耗时的计算。如何保证视觉导航系统在正确理解路径信息的前提下仍具有较好的实时性和鲁棒性,是该方法要解决的核心问题。
  1 视觉导航系统构成及工作过程
  基于计算机视觉的移动机器人导航实验系统的硬件部分由计算机、USB接口的摄像头、LEGO实验用机器人组成。软件分为2部分,即图像处理和机器人运动控制。基于视觉导航的原始输入图像是连续的数字图像。系统工作时,图像预处理模块首先对原始的输入图像进行缩小、边缘检测、二值化等预处理。其次利用哈夫变换提取出对机器人有用的路径信息。最后,运动控制模块根据识别的路径信息,调用直行或转弯功能模块使机器人做相应的移动。整个工作流程如图1所示。
  1.1 视觉导航的图像预处理
  目前图像采集设备都具有较高的空间和灰度分辨率,精度高、数据量大。
  实验中的原始输入图像是USB摄像头采集320&240像素的RGB格式图像,最大帧数30帧/s。
  图像预处理的效果对后续哈夫变换检测路径信息的速度和准确性有很大影响。对整幅图像进行抽取时计算量过大、也无必要,故先将彩色图像转换为灰度图像,再将图像的大小依据最近邻域插值法原理进行缩小以节约后续计算时间。在实验室环境下,经测试,将原始图像缩小到30%仍然能满足需要,处理时间缩短了72%。
  由于图像传感器从时间和空间上对介质(光)采样,其图像质量对现场的非均匀光场和其他干扰因素非常敏感,二值化时,不同光照条件下阈值的确定是一件比较困难的工作。目前常用的阈值选取方法有双峰法、迭代法和最大类间方差法。从执行时问和处理效果2方面考虑,对3种方法比较后(结果如表1所示),在优先考虑实时性的前提下,选用双峰法来求取阈值。在实验室条件下,路径环境相对理想,黑色引导线与背景反差较大。在灰度直方图上,引导线和背景都形成高峰,对这2个峰值及谷底的求取也可简化,使用灰度级的最大值和最小值代替2个峰值,那么这2个峰值的中间值即可作为谷底用作图像的阈值。
  地面的反光和阴影,以及不均匀的光照都会导致同一幅图像的二值化效果表现出很大差别,图2和图3是对同一幅图像在不同光照条件下二值化的结果,可以看到在光照条件2下会出现大量的黑点,这些黑点将严重影响提取路径信息的速度并且可能导致错误的路径信息。然而,相对于灰度、颜色特征,边缘特征受光照影响较小。为此,对缩小后的图像先进行引导线的边缘检测,边缘检测后图像中引导线边缘像素灰度的对比度得到增强,通过实验确定合适的阈值,然后对图像进行二值化以提取路径信息。
  1.2 引导线角度检测
  采用哈夫变换检测路径引导线的角度。为了简单而又不失一般性,引导线分1条路径和2条相交的路径。当2条直线的夹角等于90&时即认为是两条相互垂直的路径。直线的哈夫变换利用如下直线的极坐标方程:&
  式(1)中,(x,y)表示图像空间xy中所有共线的点即图像中的黑点;&表示直线法线和x轴的夹角,取值范围为0~180&;&表示直线到原点的距离。
  2 视觉导航的机器人运动控制
  机器人运动控制部分分为直行控制和转弯控制2部分。
  2.1 直行控制
  如果哈夫变换的检测结果表明是一条直线即机器人视野中只有1条主引导线时,则运行直行模块。实际中有2种情况需要考虑:一是机器人的初始位置不一定正对引导线,二是在机器人的机电配置中,左右轮子的马达运动不会绝对精确和对称。这些会使机器人在运动中出现侧偏。可采用下述方法进行。
直行控制:根据引导线在图像平面坐标中的位置来判断机器人的偏向。当引导线位于图像平面的左半边,说明摄像头的光轴与引导线不垂直且相对于引导线右偏,则命令机器人左转;当引导线位于图像平面的右半边,说明摄像头的光轴与引导线不垂直且相对于引导线左偏,则命令机器人右转;当引导线在图像平面两边均存在时,则命令机器人不偏转继续直行。机器人在前进过程中,根据图像平面中引导线位置不断调整方位,以一定的转动角度(转动角度尽量小,这样机器人的摆动幅度就会小)在直线路径上行走。
  2.2 转弯控制
  如果哈夫变换的检测结果表明是两条相互垂直的直线,即机器人的视野中出现转弯路口,则开始运行转弯模块。
  机器人需要在距转角合适的距离处开始运行转弯模块,以保证机器人视野中始终具有引导线。如图4所示,AB段表示摄像头的纵向视野范围,C点为转角点,机器人需要知道自身在实际二维平面中相对于转角点C的距离即BC段距离。由图像信息获得现实世界坐标系中的参数,即所谓三维重建,这需要对基于计算机视觉的移动机器人导航系统进行摄像机标定。
  鉴于移动机器人识别的引导线在地面上这一限制条件,并且摄像头固定在机器人上,可以选择机器人坐标系为世界坐标系,即世界坐标系与机器人同步移动。坐标原点为标定模板的左下角标定点的中心,Zw轴垂直地面,XwYw平面即为地面。在该坐标系下地面目标的坐标可以表示为(Xw,Yw,0),标定模板由直径5 mm、相距10 mm共72个圆点构成,如图5所示。
  移动机器人的摄像机标定问题,如果忽略因物面与摄像机光轴不垂直造成的非线性,则可归结为在二维世界坐标系中求变换矩阵M。
  世界坐标系(Xw,Yw,Zw),Zw轴垂直地面,XwYw平面即为地面,在该坐标系下地面目标的坐标P可以表示为(Xw,Yw,0)。式(2)中Xi,Yj(其中i=1,2,&,n,j=1,2,&,n)即为地面目标的坐标(Xw,Yw)。只要有4个标定点就可以求解该线性方程组,分别测得其在地面上的坐标(Xw,Yw,0),再根据由图像处理的方法得到的图像坐标系中的像素坐标(ui,vj)(其中i=1,2,&,n,j=1,2,&,n),即可求得变换矩阵M,M=[m11,m12,m14,m21,m22,m24,m31,m32]T,其中m34=1。变换矩阵M的元素取值受到摄像头俯仰角和架设高度的影响。在实验室条件下,本系统选取BC=13 cm时开始运行转弯模块。
  在单目视觉的条件下,对于固定的俯仰角,为保证道路引导线不移出摄像头视野范围,必须控制机器人以一定的弧度转弯,即沿弧线路径执行转弯模块。要做到这一点,弧线的弧度必须选取合适。在转弯过程中需要根据机器人的位置不断调整机器人的运动速度和转动角度,具体过程如下:
  (1)找出图像中最后一行中点m的像素坐标(um,vm),即摄像头视野最下方的中点,通过变换矩阵M将其转换为世界坐标系xyz中的位置(xm,ym),z轴垂直于xy平面即地面。
  (2)找出图像中转角点t的像素坐标(ut,vt),通过变换矩阵M求出其在世界坐标系xyz中的位置(xt,yt)。
  (3)以地面上转角点为圆心的世界坐标系定义为XYZ,Z轴垂直于XY平面即地面,求出弧线在此坐标系中的方程,(x-a)2+(y-b)2=r2(a,b)表示在坐标系XYZ下弧线所在圆的圆心,r表示圆的半径。
  (4)将xyz坐标系下的坐标点(xm,ym)转换到XYZ坐标系下,用坐标(Xm,Ym)表示,如图6所示。X轴与x的夹角为&,XOY坐标系的原点O即为转角点t,则:
  (5)弧线方程中当y=Ym时,求得X,比较x与Xm,若Xm-x&0,则命令机器人左转;若Xm-x&0,则命令机器人右转,否则直行。
  本系统确定转弯弧的半径为20 cm,弧度为90&的弧线即可使机器人顺利转弯,机器人视野中始终保持引导线。
  3 实验结果及结论
  实验中选用的LEGO移动机器人,其运动速度为8.57 cm/s(指令设定Power=25 RPM)。导航场地中画有宽1 cm的黑色引导线,实验要求中机器人完全根据引导线自主运动。实验中,识别1帧图像并且机器人根据识别的路径信息运行直行或转弯模块共需0.311 s,即机器人每处理1帧图像移动2.67 cm。实验室中的光照条件是机器人移动时的主要干扰,而锐利的引导线边缘受光照影响较小,对这些干扰有较好的滤除作用。经过在阴天白天、晴天白天以及开灯和不开灯的情况下、晚上开灯的情况下、遮盖物位于摄像头上方50 cm处形成阴影情况下,机器人能正确的沿引导线移动。同时,当摄像头视野范围内引导线消失即认为出现障碍物,机器人能发出前方有障碍物的报警信息。
  可见上面所述方法有较好的实时性和鲁棒性有一定的通用性,使得该视觉导航方法具有一定的应用价值。只要光照条件变化不是非常剧烈,在工厂、医院、办公楼等环境中,机器人根据路径引导线可自主到达目的地。
  当然,由于移动机器人活动场景的复杂性和动态特性,以及视觉处理的复杂性,视觉导航还有很多需要解决的问题,例如当导航场地出现较大面积的强烈反光、极暗的阴影时能否有效可靠的进行移动机器人的导航控制,这需要进一步研究。另外,如何将视觉系统与本系统机器人平台中的超声波传感器、光电传感器及声音传感器在空间、时间及数据上进行融合以提高系统的适应性和环境识别能力也是一个研究方向。
声明:凡资讯来源注明为其他媒体来源的信息,均为转载自其他媒体,并不代表本网站赞同其观点,也不代表本网站对其真实性负责。您若对该文章内容有任何疑问或质疑,请立即与中国机器人网(www.)联系,本网站将迅速给您回应并做处理。
***:021-7
相关阅读 :
106317人看过
32981人看过
29496人看过
28699人看过
25523人看过
23577人看过
18220人看过
16929人看过
全部评论()
一提到机器人,大家是不是最直接的印象应该是下面的这两幅动态图,抓取,抓取主要是对准确和...
  钰信哥导读:习***和卡梅伦在酒吧小酌吃炸鱼薯条、开启中英全面战略伙伴关系的黄金时代...

参考资料

 

随机推荐