有五张卡片 正面分别,分别写着2,3,4,5,6,这五个数,从中任取三张组...

当前位置:
>>>两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,从每..
两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,从每个袋中各任取一张卡片,则两数之和等于5的概率为
题型:单选题难度:中档来源:北京期末题
马上分享给同学
据魔方格专家权威分析,试题“两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,从每..”主要考查你对&&古典概型的定义及计算&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
古典概型的定义及计算
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
古典概型:
如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件的发生都是等可能的; 那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的等可能事件有n个,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为。古典概型解题步骤:
(1)阅读题目,搜集信息; (2)判断是否是等可能事件,并用字母表示事件; (3)求出基本事件总数n和事件A所包含的结果数m; (4)用公式求出概率并下结论。
求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。
发现相似题
与“两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,从每..”考查相似的试题有:
253050274168340487274155750374245330有6张卡片,分别写有1、2、3、4、5、8,现在从中取出3张卡片,平排放在一起,形成一个三位数,那_百度知道琳琳有5张卡片,分别写有数字2,3,4,5,6.如果6可以作9用,那么从中任意取出3张卡片_百度知道当前位置:
>>>从分别写有1,2,3,4,5的五张卡片中任取两张,求这两张卡片上的..
从分别写有1,2,3,4,5的五张卡片中任取两张,求这两张卡片上的数字和为偶数的概率为______.
题型:解答题难度:中档来源:广州模拟
从五张卡片中任取两张的所有基本事件共有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种情况,其中 两张卡片上的数字和为偶数的基本事件有:(1,3),(1,5),(2,4),(3,5)共4种情况,故两张卡片上的数字和为偶数的概率P=410=25故***为:25
马上分享给同学
据魔方格专家权威分析,试题“从分别写有1,2,3,4,5的五张卡片中任取两张,求这两张卡片上的..”主要考查你对&&随机事件及其概率,排列与组合&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
随机事件及其概率排列与组合
随机事件的定义:
在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,随机事件通常用大写英文字母A、B、C等表示。
必然事件的定义:
必然会发生的事件叫做必然事件;
不可能事件:
肯定不会发生的事件叫做不可能事件;
概率的定义:
在大量进行重复试验时,事件A发生的频率总是接近于某个常数,在它附近摆动。这时就把这个常数叫做事件A的概率,记作P(A)。 m,n的意义:事件A在n次试验中发生了m次。 因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能发生的事件的概率0。
随机事件概率的定义:
对于给定的随机事件A,随着试验次数的增加,事件A发生的频率总是接近于区间[0,1]中的某个常数,我们就把这个常数叫做事件A的概率,记作P(A)。频率的稳定性:
即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率; “频率”和“概率”这两个概念的区别是:
频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性。排列:
1、排列的概念:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。 2、全排列:把n个不同元素全部取出的一个排列,叫做这n个元素的一个全排列。 3、排列数的概念:从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示。 4、阶乘:自然数1到n的连乘积,用n!=1×2×3×…×n表示。 规定:0!=1 5、排列数公式:=n(n-1)(n-2)(n-3)…(n-m+1)=。
1、组合的概念:从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。 2、组合数的概念:从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数用符号表示。 3、组合数公式:; 4、组合数性质:(1);(2)。 5、排列数与组合数的关系:。 &排列与组合的联系与区别:
从排列与组合的定义可以知道,两者都是从n个不同元素中取出m个(m≤n,n,m∈N)元素,这是排列与组合的共同点。它们的不同点是:排列是把取出的元素再按顺序排列成一列,它与元素的顺序有关系,而组合只要把元素取出来就可以,取出的元素与顺序无关.只有元素相同且顺序也相同的两个排列才是相同的排列,否则就不相同;而对于组合,只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合,如a,b与b,a是两个不同的排列,但却是同一个组合。排列应用题的最基本的解法有:
(1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素,称为元素分析法,或以位置为考察对象,先满足特殊位置的要求,再考虑一般位置,称为位置分析法;(2)间接法:先不考虑附加条件,计算出总排列数,再减去不符合要求的排列数。
排列的定义的理解:
①排列的定义中包含两个基本内容,一是取出元素;二是按照一定的顺序排列;②只有元素完全相同,并且元素的排列顺序也完全相同时,两个排列才是同一个排列,元素完全相同,但排列顺序不一样或元素不完全相同,排列顺序相同的排列,都不是同一个排列;③定义中规定了m≤n,如果m&n,称为选排列;如果m=n,称为全排列;④定义中“一定的顺序”,就是说排列与位置有关,在实际问题中,要由具体问题的性质和条件进行判断,这一点要特别注意;⑤可以根据排列的定义来判断一个问题是不是排列问题,只有符合排列定义的说法,才是排列问题。
排列的判断:
判断一个问题是否为排列问题的依据是是否与顺序有关,与顺序有关且是从n个不同的元素中任取m个(m≤n)不同元素的问题就是排列问题,否则就不是排列的问题,而检验一个问题是否与顺序有关的依据就是变换不同元素的位置,看其结果是否有变化,若有变化就与顺序有关,就是排列问题;若没有变化,就与顺序无关,就不是排列问题.
写出一个问题中的所有排列的基本方法:
写出一个问题中的所有排列的基本方法是字典排序法或树形图法或框图法。
组合规律总结:
①组合要求n个元素是不同的,被取出的m个元素也是不同的,即从n个不同元素中进行m次不放回的抽取;②组合取出的m个元素不讲究顺序,也就是说元素没有位置的要求,无序性是组合的本质属性;③根据组合的定义,只要两个组合中的元素完全相同,那么不论元素的顺序如何,都是相同的组合,而只有两个组合中的元素不完全相同,才是不同的组合.
排列组合应用问题的解题策略:
1.捆绑法:把相邻的若干特殊元素“捆绑”成一个“大元素”,然后再与其余“普通元素”全排列,而后“松绑”,将特殊元素在这些位置上全排列,这就是所谓相邻问题“捆绑法”.2.插空法:对于不相邻问题用插空法,先排其他没有要求的元素,让不相邻的元素插产生的空.3.优先排列法:某些元素(或位置)的排法受到限制,列式求解时,应优先考虑这些元素,叫元素分析法,也可优先考虑被优待的位置,叫位置分析法.4.排除法:这种方法经常用来解决某些元素不在某些位置的问题,先总体考虑,后排除不符合条件的。5.特殊元素优先考虑,特殊位置优先安排的策略;6.合理分类和准确分步的策略;7.排列、组合混合问题先选后排的策略;8.正难则反,等价转化的策略;9相邻问题捆绑处理的策略;10.不相邻问题插空处理的策略;11.定序问题除法处理的策略;12.分排问题直接处理的策略;13.构造模型的策略,
&排列的应用:
(1)-般问题的应用:求解排列问题时,正确地理解题意是最关键的一步,要善于把题目中的文字语言翻译成排列的相关术语;正确运用分类加法计数原理和分步乘法计数原理也是十分重要的;还要注意分类时不重不漏,分步时只有依次做完各个步骤,事情才算完成,解决排列应用题的基本思想是:&解简单的排列应用问题,首先必须认真分析题意,看能否把问题归结为排列问题,即是否有顺序,如果是,再进一步分析n个不同的元素是指什么以及从n个不同的元素中任取m个元素的每一种排列对应着什么事情,最后再运用排列数公式求解.(2)有限制条件的排列问题:在解有限制条件的排列应用题时,要从分析人手,先分析限制条件有哪些,哪些是特殊元素,哪些是特殊位置,识别是哪种基本类型,在限制条件较多时,要抓住关键条件(主要矛盾),通过正确地分类、分步,把复杂问题转化为基本问题,解有限制条件的排列问题的常用方法是:&常见类型有:①在与不在:在的先排、不在的可以排在别的位置,也可以采用间接相减法;②邻与不邻:邻的用”,不邻的用”;③间隔排列:有要求的后排(插空).
组合应用题:
解决组合应用题的基本思想是“化归”,即由实际问题建立组合模型,再由组合数公式来计算其结果,从而得出实际问题的解.(1)建立组合模型的第一步是分析该实际问题有无顺序,有顺序便不是组合问题.(2)解组合应用题的基本方法仍然是“直接法”和“间接法”.(3)在具体计算组合数时,要注意灵活选择组合数的两个公式以及性质的运用.
排列、组合的综合问题:
(1)应遵循的原则:先分类后分步;先选后排;先组合后排列,有限制条件的优先;限制条件多的优先;避免重复和遗漏.(2)具体途径:在解决一个实际问题的过程中,常常遇到排列、组合的综合性问题.而解决问题的关键是审题,只有认真审题,才能把握问题的实质,分清是排列问题,还是组合问题,还是综合问题,分清分类与分步的标准和方式,并且要遵循两个原则:①按元素的性质进行分类;②按事情发生的过程进行分析.(3)解排列、组合的综合问题时要注意以下几点:①分清分类计数原理与分步计数原理:主要看是,还是分步完成;②分清排列问题与组合问题:主要看是否与序;③分清是否有限制条件:被限制的元素称为特殊元素,被限制的位置称为特殊位置。解这类问题通常从以下三种途径考虑:a.以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;b.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;c.先不考虑限制条件,计算出排列或组合数,再减去不合要求的排列或组合数.前两种叫直接解法,后一种叫间接解法,不论哪种,都应“特殊元素(位置)优先考虑”.④要特别注意既不要重复,也不要遗漏.
(4)排列、组合应用问题的解题策略:①特殊元素优先考虑,特殊位置优先安排的策略;②合理分类和准确分步的策略;③排列、组合混合问题先选后排的策略;④正难则反,等价转化的策略;⑤相邻问题捆绑处理的策略;⑥不相邻问题插空处理的策略;⑦定序问题除法处理的策略;⑧分排问题直接处理的策略;⑨;⑩构造模型的策略,
发现相似题
与“从分别写有1,2,3,4,5的五张卡片中任取两张,求这两张卡片上的..”考查相似的试题有:
785131754270752977564368339787796309五张分别写有3,4,5,6,7的卡片,现从中任意取出一张卡片,则该卡片上的数字为奇数的概率是______._***_百度高考
数学 概率...
五张分别写有3,4,5,6,7的卡片,现从中任意取出一张卡片,则该卡片上的数字为奇数的概率是______.
第-1小题正确***及相关解析

参考资料

 

随机推荐