请在这里输入关键词:
科目:高中物理
关于时间和时刻,下列说法中正确的是( )A.3秒末是时间的概念,共经历了3秒B.最后2秒是时间的概念,共经历了2秒C.第4秒内是时间的概念,共经历了4秒D.第5秒末是时刻的概念,已经历了5秒
科目:高中物理
关于时间和时刻,下列说法正确的是( )A.时间和时刻的区别在于长短不同,长的是时间,短的是时刻B.两个不同时刻之间的间隔是一段时间C.第3秒末和第4秒初的间隔是1秒D.第3秒内和第4秒内经历的时间不一样
科目:高中物理
关于时间和时刻,下列说法正确的是( )A、物体在5s时就是指物体在5s末时,指的是时刻B、物体在5s时就是指物体在5s初时,指的是时刻C、物体在5s内就是指物体在4s末到5s末的这1s时间D、物体在第5s内就是指物体在4s末到5s初的这1s的时间
科目:高中物理
关于时间和时刻,下列说法正确的是( )A.时刻表示时间极短,时间表示时间极长B.1分钟只能分成60个时刻C.时刻对应物体的位置,时间对应物体的位移D.作息时间表上的数字表示时刻
科目:高中物理
关于时间和时刻,下列说法中正确的是( )A、时刻表示时间短,时间表示时间长B、1min只能分成60个时刻C、学校作息时间表上的数字表示时刻D、物体在第5s内指的是物体在4s末到5s初这1s的时间
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对***更方便,扫描上方二维码立刻***!当前位置:
>>>下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比..
下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.
(1)如果现在是北京时间8:00,那么现在的纽约时间是多少;(2)此时(北京时间8:00)小明想给远在巴黎的姑妈打***,你认为合适吗?为什么?(3)如果现在是芝加哥时间上午6:00,那么现在北京时间是多少?
题型:解答题难度:中档来源:月考题
解:(1)8+(-13)=8-13=-5,∵一天有24小时,∴24+(-5)=19.答:现在的纽约时间是前一天晚上7点(或前一天19点);(2)8+(-7)=8-7=1.答:不合适,因为巴黎现在当地时间是凌晨1点;(3)设北京时间为x,根据题意得:x+(-14)=6,解得:x=20.答:现在北京时间是当天20点.
马上分享给同学
据魔方格专家权威分析,试题“下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比..”主要考查你对&&一元一次方程的应用,正数与负数,有理数加法&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
一元一次方程的应用正数与负数有理数加法
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。列一元一次方程解应用题的一般步骤:列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:&⑴审题:理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。&&⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系; ①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。&&⑶用含未知数的代数式表示相关的量。&&⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。&&⑸解方程及检验。&&⑹答题。&&综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出***)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。一元一次方程应用题型及技巧:列方程解应用题的几种常见类型及解题技巧: (1)和差倍分问题: ①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。 (2)行程问题: 基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间, 路程=速度×时间。 ①相遇问题:快行距+慢行距=原距; ②追及问题:快行距-慢行距=原距; ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度, 逆水(风)速度=静水(风)速度-水流(风)速度 例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? 两车同时开出,相背而行多少小时后两车相距600公里? 两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? 两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? 慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。) 323
(3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。 这类问题要搞清人数的变化。例.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?(4)工程问题: 三个基本量:工作量、工作时间、工作效率; 其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。 例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(5)利润问题: 基本关系:①商品利润=商品售价-商品进价; ②商品利润率=商品利润/商品进价×100%; ③商品销售额=商品销售价×商品销售量; ④商品的销售利润=(销售价-成本价)×销售量。 ⑤商品售价=商品标价×折扣率例.例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少? (6)数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a, 百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。 数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n--2表示;奇数用2n+1或2n--1表示。例:有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。(7)盈亏问题:“盈”表示分配中的多余情况;“亏”表示不足或缺少部分。 (8)储蓄问题:其数量关系是:利息=本金×利率×存期;:(注意:利息税)。 本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。&(9)溶液配制问题:其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。&
(10)比例分配问题:&这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。&还有劳力调配问题、配套问题、年龄问题、比赛积分问题、增长率问题等都会有涉及。正数:就是大于0的(实数)负数:就是小于0的(实数)0既不是正数也不是负数。
非负数:正数与零的统称。非正数:负数与零的统称。正负数的认识:1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如:-a一定是负数吗?***是不一定,因为字母a可以表示任意的数。若a表示正数时,-a是负数;当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;当a表示负数时,-a就不是负数了,它是一个正数。
2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3.数细分有五类:正整数、正分数、0、负整数、负分数;但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。有理数的加法:把两个有理数合成一个有理数的运算叫做有理数的加法。有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反的两个数相加得0;(4)一个数同0相加,仍得这个数。有理数加法的运算律:(1)加法的交换律 :a+b=b+a;(2)加法的结合律:( a+b ) +c = a + (b +c)。几个有理数相加常用方法:①.运用加法运算律把同号的加数相加,再把异号的加数相加;②.应用运算律把可以凑整的加数相加;③.运用运算律把互为相反数的加数相加。用加法的运算律进行简便运算的基本思路:①先把互为相反数的数相加;②把同分母的分数先相加;③把符号相同的数先相加;④把相加得整数的数先相加。注意事项:有理数的加法与小学的加法有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,而有理数的加法运算总是涉及到两个问题:一是确定结果的符号;二是求结果的绝对值。在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用那一条法则。在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了。多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。记忆要点:同号相加不变,异号相加变减。欲问符号怎么定,绝对值大号选。
发现相似题
与“下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比..”考查相似的试题有:
346821184473537866133191528479368386几点几分和几点过几分有区别么?比如说3点20吧:指的是今天过去了3小时加20分钟的那个时刻?还是3点这个时刻为参照点再过去20分钟的时刻?前者是直接用过去的时间多少推断现在的时刻的.后者是以一个整点时刻为参照再过了多少分钟推断现在时刻的.求明白人指教,万分感谢!还有一个问题是:3点整指的是第三小时尾,还是第四小时初?或者是第三小时刚过第四小时未开始的那一瞬?
不知你为什么问这个,个人表示好奇!好,下面来回答你的问题;1:3点20的理解,一个可以理解为:是3点这个时刻为参照点再过去20分钟的时刻.也可以理解为:今天过去了3小时加20分钟的那个时刻其实它的时间意义就是3小时20...
为您推荐:
其他类似问题
扫描下载二维码