排行榜是怎么统计的,为什么我的经验和最具魅力男明星排行榜不能上呢

苹果/安卓/wp
积分 24401, 距离下一级还需 7199 积分
权限: 自定义头衔, 签名中使用图片, 隐身, 设置帖子权限, 设置回复可见, 签名中使用代码
道具: 彩虹炫, 涂鸦板, 雷达卡, 热点灯, 金钱卡, 显身卡, 匿名卡, 抢沙发, 提升卡, 沉默卡, 千斤顶, 变色卡, 置顶卡
购买后可立即获得
权限: 隐身
道具: 金钱卡, 彩虹炫, 雷达卡, 热点灯, 涂鸦板
TA的文库&&
哼哼签到天数: 38 天连续签到: 1 天[LV.5]常住居民I
编者按:平日里,爱问频道有四成以上的疑难提问来自于计量与统计,相信统计的学习和进阶也是所有经管专业的BABY们绕不过去的一道坎儿,若能以较高的水平精通一门以上的统计工具,对学习和科研而言,则相当于掌握 了一门利器,剑在手,可攻城拔寨,运用与心。今天小编为大家推荐一篇来自果壳网的网友清扬婉喵的文章,作者毕业于一所美国统计学专业排名前10的公立大学,从最初的陌生到与统计学相知、共舞,再到沉浸其中、倾心投入,及至打通统计学习的任督二脉,爱上统计学------文中不仅系统盘点了统计学习的经验和感悟,更对统计的学习资源做了悉心的标注和罗列,也能从中看到美国统计教育的教学模式,美中不足的是,作者是本科毕业,在总结的力度、厚度和学术沉淀的火候上要略欠一些,但对于统计学入门的新手以及跨学统计专业的朋友们来说,依然有一定的参考和借鉴价值,NOW,就让我们跟随作者的笔触,踏上一段统计的梳理和学习之旅......毕业于美国一个统计学专业排名前10名的公立大学。今年6月刚刚毕业。从大二上第一门统计专业课算起,已经和统计学打了三年的交道了。我从最开始by chance进的专业,到觉得这个专业无聊,再到开始对这个专业不讨厌,最后到现在觉得这个专业很性感,决定和统计学继续把交道打下去,其实中间还蛮曲折的。属于非常努力的那种学生,但是因为天赋有限,所以“努力”让自己在整个专业中的成绩稳定在中上游,“缺乏天赋”使自己没有能成为最优秀的。但是就是因为这样,才觉得自己在学习统计学方面的经验和体会对于大部分组员们还是很一定参考价值的。相信大多数刚进来统计学专业的弟弟妹妹们,对统计学的理解就是限定于“概率”。比如一个袋子里面3个球,两个红的,一个白的,蒙住你的眼睛,问模到白色的球的概率是什么。我当时觉得这就是统计学,统计学就是这个。所以就导致了在学基础的数理统计的时候,对基础理论的掉以轻心,以导致之后花了1000%的力气去弥补当年的损失。为了避免学弟学妹们和我一样犯同样的错误,我一定会在这个帖子中好好承认我当年的问题,总结我当年血一样的教训,希望大家在读了这帖子后,有点启发,少走点弯路,多点时间去锻炼身体,以便更好地享受你和统计学有价值的时光。1. 关于专业的选择:你一定要给你自己一个机会相信有很多看到这篇帖子的同学还没有学习过这门专业,或者说是打算尝试下这门专业。从我的角度来看,我觉得大家不管上第一门统计课的动机如何,都应该给这个专业一个走进你的机会。不单单是对于统计这一个专业而言,其实是对于所有专业都是这样。我为什么这么讲呢?我高中是文科生。数学一般。物理奇烂。高一期末分科考试,因为物理不计入总体成绩,我又打算学文,于是就破罐子破摔,物理以17/120的成绩结束了我人生中最后一门物理课。真的是人生中最后一门物理课哦,这种恐“物”心理一直延续到我大学毕业,都没敢再上一门物理课。我来美国读本科以后,其实也非常排斥数学,也因为我是文科生,从高二分科后,就觉得自己数学不好。其实这种心理暗示很恐怖的,自己总是觉得数学不好不好,就越发真的不好。于是本科打算进的专业也不能和数学有太大关系,于是就说学经济吧。后来发现,自己对专业的选择是多么幼稚可笑。学经济的人的数学能力应该是非常非常强的。我记得我的一个助教,她过去是北航学习物理的,现在是我本科学校的phd。她说经济学中的数学推导是最令人发指的,发指到她算着算着就不知道自己到底为什么这么算了。所以说大家在进去专业前,一定了解这个专业的性质是什么。我当时选择经济,就是因为国人都学,觉得这个是个很高级的专业。没有想到的是,经济学就要读PHD才有出路,且就业压力极大,除了faculty这条路基本上没有什么路了。然后,大一上着上着的时候,知道了原来学校还有一个专业叫Applied Computational Mathematical Science,简称ACMS,是应用数学专业的一个本科分支。这个专业有个分支是数学经济。我觉得要不再选择个这个专业吧。虽然有点数学课,但是硬着头皮也能读下来,何况美国人民数学不好。于是我就又加了一个专业,就是这个ACMS。这个时候,我有了两个专业。所以大家在学一个专业或者课程前,千万不要根据自己过去的经历给自己下定义,为什么呢?因为我发现我自从选择了这个专业,要逼迫自己开始学数学的时候,我渐渐发现学数学真的很有意思。数学前几门入门课,都是几百人上的,里面鱼龙混杂,拿个高分不难。这种“假高分”就让我觉得学得挺有成绩感的。成就感真的会成就你对一个事物的兴趣的。后来上了高级别的课程,每个班级只有30个人的时候,那个时候的30个人都是真正的数学专业的,GPA比较难拿。但是因为尝试过,也比较喜欢,所以那个时候学习数学就是兴趣为先,GPA次要。现在有的时候,真的再想,当年应该学门物理课的,没准我现在就是物理专业了。后来我是怎么又学了统计学呢?我大一结束的时候,去找ACMS的顾问,也就是advisor,讨论选课的事情。她看我上课上得蛮快的,说现在有一门叫做数理统计学的课程,是开学后秋天开始上,挺好的,问我想不想上。我当时想,什么是统计。我其实那个时候连statistics这个单词都要反应半天。就和advisor讲我还是不上了,因为不知道是什么。这个advisor超级热心,说这课报的人比能接纳的人多,而且一年一次,趁还有空余位置,就把我加进去,等我上了第一节课,再决定放不放弃。然后我一听,也好啊,反正没损失。之后就在2010年的秋天上了人生中第一门真正意义上的统计课。当时之所以没有在第一天扔掉这门课,就是发现想上这课的人真的好多好多,但是大部分都不能如愿,还要等一年才能上,自己有种赚到的感觉。所以,学弟学妹们,一定要给你自己一个和陌生学科接触的机会。千万不要因为自己是文科生就觉得自己玩不了数字,也不要因为自己是理科生玩不了文学。一定要尝试,选专业如此,今后的路更是如此。可能你给自己的这个机会能改变你的人生轨迹。我就想如果我当年没有遇到这个热心的advisor,没有决定在那节课上待下去,我现在可能正在发愁到底学不学经济学,或者转不转专业的问题。2. 关于选择几个专业:一定要精致,精致,再精致我觉得我大学四年中,很遗憾的一件事情就是选择了三个专业。三个专业的好处是接触的知识多,范围广,找工作时候的对口工作多。但是对于大部分智商平常但又非常努力的童鞋们来说,弊绝对是大于利的。为什么呢?人的精力是有限的,做得多就意味着做不精。三个专业,又想拿好的GPA,就意味着每天的日子不是为了学知识活的,而是为了GPA而战的。这种学习方式,就是学不精致:只要学到考试点上,绝不深究。不是因为不想深究,而是因为另外一门专业还要时间去保住GPA。如果让我重新选择,我会在我大二的时候放弃掉经济专业。把ACMS的专业方向从数学经济改成Operation Research,匀出些时间学统计专业里面的选修课程。还要匀出时间和教授做相关的research。这样自己统计方面的知识储备就更加完善。因为,对于一个真正想在统计学这条路上走下去的人来讲,本科阶段放弃了这种探究同领域不同方向的机会真的是很大的遗憾。尤其是对于统计学这种研究性专业来讲,在未来申请硕士和博士的时候,还是非常看重你本科的专业背景的。所以,如果你们找到了自己真正喜欢的专业,改舍弃的东西,一定要毫不犹豫地舍弃。千万不要图多,要精致,一定要精致。何况,现在想想,其实把一个专业学精致了,找到的工作只会好不会差。3. 零基础,入门统计学在这部分中,我想根据自己大学中学习统计学的经验,介绍下如何在零基础的前提下完成统计学的入门。所以这部分的内容无论是对于本科阶段没有接触过统计的同学,还是小组中想了解这方面内容的前辈们都很适用。当然,如果你已经完成了本科阶段统计的学业,你可能是统计专业或者相关领域的研究生,PHD或者已经工作数年的职场达人,欢迎你来补充和critique我写的内容。下面我根据我的学习内容,把统计学入门应该学的基础课程分成数学部分,编程部分和统计部分三个部分加以罗列。每个建议的topic下我都列出了建议使用的书籍以及对应的Amazon上的地址,有一些我还列出了一些网上课程的资料,希望能够减少大家花在google上的时间。虽然我学统计的时候,是不得不用英文学习,我还是建议大家直接学习英文课本。按照我周围人大部分人的经验来看,英文描述学术方面的语言更加简练易懂。总之,下面的书也都有中文译本,大家根据自己的实际情况选择最适合自己的方法就好。A:数学部分:以下内容按照顺序学习就好解析几何和微积分教科书是Stewart写的数学逻辑Daniel J. Velleman 的基础微分Boyce-DiPrima的矩阵代数及其应用David Poole 的实分析Taylor的线性代数JohnH. Mathews 的MIT的B:计算机编程部分:没有必然的先后顺序之分J***A关于使用哪个平台,我不是expert,大家问问周围的专业人士们,然后告诉我,我来更新。我使用的是。这个应该是最常用的了。因为自己当初学J***A就是应付差事(大家千万别学我)。&其实很多学习CSE的同学喜欢&,更方便。教科书是使用的Reges和Marty的这本书也是U of Washington的两门基础J***A编程课,CSE 142和CSE143,的教科书(非必买)。先上完142成绩合格了才能上143。这个两个课程的网站对外是公开的。真的是非常好的课程。我也看过很多J***A的课程和公开课,这两门课程无论是从质量和难度上,绝对是J***A课程中的上品。你如果认认真真完成了&每个作业,即使是对于计算机专业的同学,也是非常大的提高。这两节课最初就是由教科书的两位作者上 的,虽然说Marty现在抛弃了UW去了Stanford,我还是怀念他四年前给我上这门课的场景。Reges也非常非常非常棒,我的第二门课是跟他的。他是那种能把编程这么无聊的事情讲成非常浪漫的事情的教授。他现在还是在UW为了这个课程的发展而拼搏。R语言:统计学中最重要的工具,没有之一我最早用的就是CRAN的发布的现在用的是,好用太多,强烈推荐大家去下这个。讲R语言的书很多很多,每本书都有它存在的闪亮点。我觉得有机会应该具体讨论下R语言的学习。根据我 的感受,看书绝对不是学习编程的最佳方式,但是绝对是最笨的方法。编程是作为工具存在的。非CS的同学,在学习编程方面要功利些,也就是有针对性地学习:有用的学,没用的就没有必要钻研(当然,如果日后打定主意走上统计这条不归路的时候,还是要深入学习,比如我)。这里有几本我觉得蛮有用的书籍。大 家千万不要掏腰包买,下载就好(我不能这么误导,但是真心觉得这种工具书,不值得买啊)Michael J. Crawley 的(这本书的中文版年末或者明年年初上架,问我为什么知道?因为我和另外几名战友在翻译这本书)看来真有必要好好细致讨论下如何学习R :)MatlabMatlab据说在淘宝上可以买。在米国的话还要买正版,还好是学生价,99刀,虽然也不便宜,但是和非学生 价相比,我实在是谢天谢地。话说在国外的同学们,还是能用正版尽量用正版。我有认识人被抓住罚了2500大洋就是因为用学校网络下载盗版windows。虽然非常少发生,但是一旦发生了的话,2500大洋在美国能买 25套windows正版系统了。Matlab实在没有什么好的书推荐,因为我只是在学习线性代数的时候使用Matlab。平时都是使用R。但是有一个手册比较好,。我当时学习matlab的时候就是靠它还有google写的作业。加上上面线性代数里面推荐的那本Matlab的书籍,应该够用了。LaTex写作业必备神器。大家不用专门买书的,其实google和LaTex网上的一些手册就够了。如果真的想系统学,Helmut和Patrick合著 的还是不错的。还有介绍个,我感觉这个更常用些,我们的作业都是靠这个模板弄的。C:统计学学习部分这部分开始真正意义上介绍和统计核心课程相关的学习内容。和与数学部分不同,这部分中的学习完全可以和我在计算机编程部分中讲的知识相互贯穿来学的。尤其是R语言的学习,对统计的了解和学习是及其有帮助的。这个是重中之重。其实数理统计本身并不是多难,稍微有一些数学微积分基础的同学,掌握这部分内容应该非常快,但是想掌握扎实并且灵活了,非常难。好比说统计学中最基础的一个概念:平均数。不学统计的同学们也知道,平均数就是把所有的数据相加除以数目。但是学了数理统计的童鞋们,如果你们对平均数的概念就只是这样,那你们真的应该好好翻翻书再复习下了。初中老师讲平均数的时候,还讲了中数,除了这些还讲了条形图,扇形图等各种各样的图。为什么要讲这些?为什么要讲平均数?其实在这个阶段,就是为了教你如何直观地观察数据,让你对数据有个直观的把握。后来我们学了variance,就发现,原来描述数据的时候,mean不准确,我们要结合variance才能更准确地明白数据。之后又有结合参数来讲mean。简单的算术mean和为了衡量参数而衍生出来mean有着不同的意义。这个mean可以用maximum likelihood estimator求得,也可以用method of moments求出。不同的distribution有mean, random resampling中有mean,做regression analysis的时候要用mean,连做statistical inference的时候还是要用到mean。Mean真是无处不在。虽然说这些定义还算是基础,但是非常容易搞混,一旦搞混了,你接下来的很多东西都不能学了。每天积攒点糊涂了,几个月下来就真的糊涂了。这里推荐大家一本书Larsen 的他还配套一本参考***,不过这本***只有课后题的奇数题目的***,偶数题目的***只有教师用书上有。如果不会的话,只能google。这本书算是我见过的所有的数理统计学书中最最简单直白的了,他前面一二章讲的是非常基础的概率知识,然后徐循渐进到较难的部分。整本书将近千页,但是对大家的数学水平并没有很高的要求,只要微积分基础还算是扎实,稍微知道点实分析中的分散和收敛就可以了。不过,这本书信息量也非常大,覆盖的内容也很广。我学数理统计学的时候,就是用的这本,连续三个学季,也就是9个月才把这本书从第一页学到了最后一页。到了后来学习更难的课程的时候,还要经常翻书来温故而知新,也可见本书对日后的学习有多重要了。这里我给大家分享下我学习这本书的心得,希望对自学的童鞋们有些帮助:

参考资料

 

随机推荐