某种商品的售价是15元时,能卖出500个,价格每上涨1元,卖出的个数就要减少20个,要使销售金额最大,价格应定为______元.
设售价为x,则销售个数为500-20(x-15)∴y=x×[500-20(x-15)]=-20(x2-40x)=-20(x-20)2+8000当x=20元时销售金额最大8000元.故***为:20.
为您推荐:
其他类似问题
根据题意可知销售个数为500-20(x-15),故y=x×[500-20(x-15)]用配方法化简可得解.
本题考点:
二次函数的应用.
考点点评:
此题主要考查了二次函数的应用,根据题意得出当售价为x元时,卖出的商品的个数是解题关键.
y=(15+x)(500-20x)抛物线的顶点可以求出
扫描下载二维码将进货单价40元的商品按50元一个售出时,能卖出500个,若每个商品涨价1元,其销售量减少10个,为了赚到最大利润,则售价应定为( 我设的是增加金额为x,(10-x)(500-10x)=y.算出来是增加20.为什么跟***不一样?哪里错了?
这伤狠美152
为您推荐:
其他类似问题
扫描下载二维码一件商品,当售价是15元时,每月能卖500个,价格每涨1元就少卖20个,要是销售额最大,定价应为多少?
y=(15+x)*(500-20x)展开后求极大值20元时最大
为您推荐:
其他类似问题
扫描下载二维码将进货单价40元的商品按50元一个售出时,能卖出500个,若每个商品涨价1元,其销售量减少10个,为了赚到最大利润,则售价应定为( 我设的是增加金额为x,(10-x)(500-10x)=y.算出来是增加20.为什么跟***不一样?哪里错了?
温习了一下二次函数,哈哈.应该是利润 Y=(50+x-40)(500-10x) 求最大值,可以算的在x=20的时候取得利润最大值Y=9000你是题目意思理解出了点问题,是每涨价1元,销量减少,其实按你的方程式,二次方系数为正,函数开口向上,右边可以无限取值,也不可能有最大值.
为您推荐:
其他类似问题
扫描下载二维码