& 二次函数的应用知识点 & “某种商品的进价为每件50元,售价为每件6...”习题详情
162位同学学习过此题,做题成功率72.8%
某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买),但是最低价为55元/件.同时,商店在出售中,还需支出税收等其他杂费1.6元/件.(1)求顾客一次至少买多少件,才能以最低价购买?(2)写出当一次出售x件时(x>10),利润y(元)与出售量x(件)之间的函数关系式;(3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他促销条件不变的情况下,最低价55元/件至少要提高到多少?为什么?
本题难度:一般
题型:解答题&|&来源:2013-溧水县一模
分析与解答
习题“某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买)...”的分析与解答如下所示:
(1)设顾客一次至少购买x件,则超过了(x-10)件,每件就应该减少0.1(x-10)元,就可以建立等式为60-0.1(x-10)=55,求出其解就可以了;(2)根据利润=(每件售价-每件进价)×数量建立等式就可以表示出y与x之间的函数关系式;(3)先将y与x之间的关系变为顶点式,求出抛物线的对称轴,根据抛物线的性质就可以求出最大利润的数量,从而可以确定最低售价.
解&(1)设顾客一次至少购买x件,由题意,得60-0.1(x-10)=55,解得:x=60;(2)由题意,得当10<x≤60时,y=[60-0.1(x-10)-50]x-1.6x=-0.1x2+9.4x;当x>60时,y=(55-50-1.6)x=3.4x.(3)∵当10<x≤60时,y=-0.1x2+9.4x∴y=-0.1(x-47)2+220.9,∵a=-0.1<0,∴抛物线的开口向下,对称轴是x=47,∴在对称轴的左侧y随x的增大而增大,∴x=47时,利润y有最大值,而超过47时,利润y反而随x的增大而减少.要想卖的越多赚的越多,即y随x的增大而增大,∴二次函数性质可知,x≤47,∴当x=47时,最低售价应定为60-0.1(47-10)=56.3元.
本题考查了列一元一次方程解实际问题的运用,利润=(每件售价-每件进价)×数量的运用,二次函数的解析式的运用,顶点式的运用,在解答时求出利润的解析式是关键,灵活运用解析式解决问题是难点.
找到***了,赞一个
如发现试题中存在任何错误,请及时纠错告诉我们,谢谢你的支持!
某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的...
错误类型:
习题内容残缺不全
习题有文字标点错误
习题内容结构混乱
习题对应知识点不正确
分析解答残缺不全
分析解答有文字标点错误
分析解答结构混乱
习题类型错误
错误详情:
我的名号(最多30个字):
看完解答,记得给个难度评级哦!
经过分析,习题“某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买)...”主要考察你对“二次函数的应用”
等考点的理解。
因为篇幅有限,只列出部分考点,详细请访问。
二次函数的应用
(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.
与“某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买)...”相似的题目:
[2010o兰州o中考]如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为&&&&米.
[2009o庆阳o中考]图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是( )y=-2x2y=2x2y=-12x2y=12x2
[2015o乐乐课堂o练习]如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为( )y=254x2y=-254x2y=-425x2y=425x2
“某种商品的进价为每件50元,售价为每件6...”的最新评论
该知识点好题
1(2011o株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )
2(2011o兰州)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是( )
3某厂大门是抛物线形水泥建筑,大门地面路宽为6m,顶部距离地面的高度为4m,现有一辆装载大型设备的车辆要进入厂区,已知设备总宽为2.4米,要想通过此门,则设备及车辆总高度应小于( )
该知识点易错题
1如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=x&m,长方形的面积为y&m2,要使长方形的面积最大,其边长x应为( )
2将进货单价为50元的某种商品按零售价每个80元出售,每天能卖出20个,若这种商品的零售价在一定范围内每降1元,其销售量就增加1个,则为了获得最大利润,应降价&&&&元.
3如图,排球运动员甲站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行路线是抛物线的一部分.当球运动到最高点D时,其高度为2.6m,离甲站立地点O点的水平距离为6m.球网BC离O点的水平距离为9m,以O为坐标原点建立如图所示的坐标系,乙站立地点M的坐标为(m,0).(1)求出抛物线的解析式;(不写出自变量的取值范围)&(2)求排球落地点N离球网的水平距离;(3)乙原地起跳可接球的最大高度为2.4米,若乙因为接球高度不够而失球,求m的取值范围.
欢迎来到乐乐题库,查看习题“某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买),但是最低价为55元/件.同时,商店在出售中,还需支出税收等其他杂费1.6元/件.(1)求顾客一次至少买多少件,才能以最低价购买?(2)写出当一次出售x件时(x>10),利润y(元)与出售量x(件)之间的函数关系式;(3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他促销条件不变的情况下,最低价55元/件至少要提高到多少?为什么?”的***、考点梳理,并查找与习题“某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买),但是最低价为55元/件.同时,商店在出售中,还需支出税收等其他杂费1.6元/件.(1)求顾客一次至少买多少件,才能以最低价购买?(2)写出当一次出售x件时(x>10),利润y(元)与出售量x(件)之间的函数关系式;(3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他促销条件不变的情况下,最低价55元/件至少要提高到多少?为什么?”相似的习题。var sogou_ad_id=731545;
var sogou_ad_height=90;
var sogou_ad_width=980;